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Abstract

Recent advances in spaceborne GPS technology have shown significant advantages
in many aspects over conventional technologies. For instance, spaceborne GPS can
realize autonomous orbit determination with significant savings in spacecraft life
cycle, in power, and in mass. At present, the onboard orbit determination in real time
or near-real time can typically achieve 3D orbital accuracy of metres to tens metres
with Kalman filtering process, but 21* century space engineering requires onboard
orbit accuracy of better than 5 metres, and even sub-metre for some space
applications. The research focuses on the development of GPS-based autonomous
orbit determination techniques for spacecraft. Contributions are made to the field of

GPS-based orbit determination in the following five areas:

Techniques to simplify the orbital dynamical models for onboard processing have
been developed in order to reduce the computional burden while retaining full model
accuracy. The Earth gravity acceleration approximation method was established to
replace the traditional recursive acceleration computations. Results have
demonstrated that with the computation burden for a 5x5 spherical harmonic
gravity model, we achieve the accuracy of a 70 x 70 model. Efforts were made for
the simplification of solar & lunar ephemerides, atmosphere density model and orbit
integration. All these techniques together enable a more accurate orbit integrator to

operate onboard.

Efficient algorithms for onboard GPS measurement outlier detection and
measurement improvement have been developed. In addition, a closed-form single
point position method was implemented to provide an initial orbit solution without

any a priori information.

The third important contribution was made to the development of sliding-window
short-arc orbit filtering techniques for onboard processing. With respect to the

existing Kalman recursive filtering, the short-arc method is more stable because



more measurements are used. On the other hand, the short-arc method requires less
accurate orbit dynamical model information compared to the long-arc method, thus it
is suitable for onboard processing. Our results have demonstrated that by using the 1
~ 2 revolutions of LEO code GPS data we can achieve an orbit accuracy of 1 ~ 2
metres. Sliding-window techniques provide sub-metre level orbit determination

solutions with 5~20 minutes delay.

A software platform for the GPS orbit determination studies has been established.
Methods of orbit determination in near-real time have been developed and tested.
The software system includes orbit dynamical modelling, GPS data processing, orbit
filtering and result analysis modules, providing an effective technical basis for

further studies.

Furthermore a ground-based near-real time orbit determination system has been
established for FedSat, Australia’s first satellite in 30 years. The system generates
10-metre level orbit solution with half-day latency on an operational basis. This
system has supported the scientific missions of FedSat such as Ka-band tracking and
GPS atmosphere studies within the Cooperative Research Centre for Satellite System
(CRCSS) community. Though it is different from the onboard orbit determination, it

provides important test-bed for the techniques described in previous section.

This thesis focuses on the onboard orbit determination techniques that were
discussed in Chapter 2 through Chapter 6. The proposed onboard orbit determination
algorithms were successfully validated using real onboard GPS data collected from

Topex/Poseidon, CHAMP and SAC-C satellites.
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Chapter 1

Introduction

In this chapter a brief overview of Global Positioning System (GPS) based orbit
determination is given, followed by an introduction to onboard orbit determination
for Low Earth Orbiters (LEO). The objectives and scope of the research will be

outlined, and the structure of the thesis is provided in the last section.

1.1 GPS-based Orbit Determination for LEO Spacecraft

1.1.1 Main Attractions of Spaceborne GPS

Over the last two decades there has been tremendous advancement in GPS
technology for a variety of applications. Spaceborne GPS is revolutionizing future
spacecraft systems [Munjal, et al., 1992]. It has a combined capability of
determining spacecraft trajectory and attitude, relative positioning between space
vehicles, sounding the atmosphere, and delivering precise time synchronization to
spacecraft electronics. The use of GPS receivers in Low Earth Orbit spacecraft
systems has been quite common for both engineering and scientific purposes. In the
relatively new applications, such as navigation in Geostationary Earth Orbit (GEO)
[Christian, 2001], Geostationary Transfer Orbit (GTO), High Elliptical Orbit (HEO),
space rendezvous, maneouvres and atmospheric re-entry, GPS receivers are the
preferred navigation sensors, even though GPS-based navigation is, in many cases,
still in the experimental phase or under development. The main applications of space

GPS receivers include, but are not limited to, the following aspects.

Real time orbit information for tracking and navigation applications: A spacecraft
collecting GPS data with an onboard receiver can compute its 3D position and

velocity in a diversity of ways, depending in part on the orbit and mission



requirements. The real time orbit state information can benefit both ground-station
operation and onboard uses: simplifying ground tracking and operations, and
significantly improving space vehicle autonomy [Potti, et al., 1995].

Precise timing applications: In addition to position and velocity, the GPS receiver
can also provide accurate reference time synchronized to UTC to better than 1ps.
This accuracy can be useful for telecommunications and observations, and also for

time synchronization between satellites and ground stations [Klepczynsk, 1996].

Attitude determination applications: Using three or four GPS antennas, the receiver
can determine real time attitude information of the spacecraft to an accuracy of 0.5
degree or better via processing carrier phase measurements [Lightsey, 1996].
Limitations of the separation of antennas and multipath effects on the spacecraft

structure limit the achievable °

Scientific applications: Recorded raw dual-frequency measurements can be
downloaded to ground stations for post-processing, which may lead to precise orbit
solutions of the spacecraft required for scientific observation missions, including
remote sensing. Raw data may also be used for earth science studies, such as gravity
recovery, GPS atmosphere sounding and GPS ocean reflection [Bertiger, et al.,
1998].

Among these applications what appears most remarkable is the capability of
spaceborne GPS to provide accurate and/or autonomous satellite orbit determination,
which serves for both space-engineering and scientific purposes, and finds
applications in spacecraft tracking and navigation from near Earth to beyond
geostationary altitudes. Orbit accuracy requirements can range from hundreds of
metres to metres for engineering purposes, from one metre to a few centimetres for

scientific applications.

Spacecraft tracking and navigation requirements can include:
e Real time state knowledge and active control during launch and orbit

insertion, during re-entry and landing;



e Real time relative navigation between vehicles during rendezvous;

e Autonomous station keeping;

e Near-real time orbit knowledge for operations and orbit maintenance, rapid
post-maneouver orbit recovery; and

e After-the-fact precise orbit determination for scientific applications.

This PhD research is concerned with the applications of using Global Positioning
System (GPS) receivers for spacecraft tracking and navigation applications: ground-
and space-based orbit determination approaches in general, addressing the particular
challenges posed in GPS-based real time and near-real time onboard orbit
determination. The next section presents the objective and scope of this research.

1.1.2 Ground-based Precise Orbit Determination

The techniques involved in these applications can be classified into direct GPS-
based orbit determination, and differential GPS precise orbit determination (POD).
As illustrated in Figure 1, in the former case only flight GPS measurements are used
for orbit tracking and/or autonomous navigation, achieving orbit accuracy of a few to
hundreds of metres. In the latter case, the data collected at a global GPS tracking
network of tens of stations are processed along with the flight data to achieve the
orbit accuracy of better than 10 centimetres. Figure 1.1 illustrates the concepts of
GPS-based satellite POD with a global differential GPS network.

%GPS % & GPS SV ﬁ& GEO glggf‘ sV

% s m GPS SV
GPS GPS 8V II

§ RN

@ Global differential GPS site

Figure 1.1 Concepts of standalone (left) and global GPS orbit determination (right).



The potential of GPS to provide accurate and autonomous satellite orbit solution was
noted early in its development. Early studies of direct GPS-based tracking can be
found in a number of references [Farr, 1979], which addressed the applications from
near-Earth to beyond geosynchronous orbit. Van Leeuween & Carrier [1997]
examined GPS tracking of the Space Shuttle and Tapyley [1987] focused on
autonomous near-Earth navigation. The recent studies and applications include those
in Gill, et al. [2001], which reported the BIRD satellite mission as a milestone
towards GPS-based autonomous navigation; and Christian [2001] which examined
the GPS receiver architecture and expected performance for autonomous navigation
in High Elliptical Orbits (HEO). The first reported results from relative GPS
navigation were those of the ETS-VII autonomous rendezvous using relative GPS
navigation [Kawano, 1999], which achieved the accuracy of relative navigation of
10m in position and 3cm/s in velocity. Further information can be found in the
website [Spaceborne GPS mission directory, 2004, see Appendix B], which is a GPS
mission directory, chronologically listing the space missions that have included a
GPS receiver, or receivers, for any number of reasons. It is a comprehensive
directory of missions that have been cited in the scientific literature, although it may
not be an all-inclusive listing of spaceborne GPS missions flown. Mission
descriptions, the capacity that the GPS receiver or receivers had, the model of GPS

receiver, and references citing the mission are also given.

Direct GPS orbit determination can meet the most stringent of the accuracy needs
for spacecraft tracking and navigation for the most dynamically unpredictable
vehicles. The orbit computation may be conducted onboard spacecraft in real time or
at a ground-station in near-real time, or in both ways. There are two ways to obtain
the orbit solutions: GPS navigation solutions (point positioning) and orbit
filter/improvement solutions. GPS standard point positioning is as accurate in low
orbit as on the ground: theoretically 10 to 20 metres with zero Selective Availability.
Any orbit below 3000km is considered Low Earth Orbit (LEO) in this context.
Below 3000km altitude, signals from 10 or more GPS satellites are typically
received by an upward-looking antenna with the current GPS constellation, reaching
the receiver with nearly uniform power levels and geometric distribution above the
horizon. Above 3000km altitude, the condition for receiving GPS signals becomes

much less favourable [Mehlen, 2000]. Received signal power typically decreases



because: (1) the transmitted power of some signals drops off as a result of the
attenuation pattern of the transmitting GPS satellite and (2) the ranges to many of the
visible satellites increase. As a result, the number of visible or receivable satellites
by an up-looking antenna drops dramatically in orbits above 3000km. The flight data
from an onboard receiver would have difficulty generating a single-point solution
above 3000km. In any orbit there is also a not uncommon problem: some onboard
GPS receivers cannot operate all the time, due to reasons such as limitations of the
onboard power supply. As a result, a continuous supply of navigation solutions is not

always possible.

An orbit filter procedure can provide better orbit solutions, meeting the stringent
orbit accuracy requirements for GPS tracking and navigation services to satellites in
different orbits, ranging from above the Earth surface, below 3000km, 3000km to
20,000km, Geosynchronous and High Elliptical Orbits. The orbit filter (OF) uses the
GPS measurements or navigation solutions (measurements normally sampled at rates
of seconds to minutes) over a data arc of tens of minutes to hours in length, to
estimate the state vector for each epoch state. Functioning along with the orbit filter
is an orbit integrator (Ol), which propagates the state between state update epochs,
and hours to days forward for real time tracking when required. In general, an orbit
filter provides smooth and continuous orbit solutions, achieved with an additional
piece of software. The early studies of using GPS flight data for precise real time
LEO navigation testing were reported in Bertiger, et al. [1998], which demonstrated
that the 3D RMS orbit error of 4 ~ 6 metres was achieved after cold start of 4 hours,
using broadcast GPS orbits and non-zero SA signals for Topex/Poseidon at 1340km
altitude. The recently reported results [Da Kuang, et al., 2001] from filtering
processing of T/P flight data with zero SA indicates that orbit positional accuracy at
the 1 to 2 metre level is achievable, while the results from processing of GPS/MET

flight data with zero SA indicates the 3D orbit accuracy of 6 to 8 metres.

Differential GPS Precise Orbit Determination (POD) can meet the requirements for
orbit accuracies ranging from 1 metre down to a few centimetres. POD techniques
with differential GPS was initially developed for non-real time applications, which
can tolerate the delay of 24 hours to several days after data collection. But later on

near-real time processing of GPS tracking data could routinely provide LEO orbit



determination accuracy at the level of 5cm to 10cm with delay of 10 hours by the Jet
Propulsion Laboratory (JPL) and other space organizations. Recent improvements in
JPL’s GIPSY-OASIS 11 processing system have enabled turn around at the 1-hour
level or better for such precise orbit determination. Further development will allow
real time orbit determination with NASA’s global differential GPS correction signals

broadcast via communication satellites. The concept is also shown in Figure 1.1
(right).

The key to achieving near-real time and real time POD is to implement a highly
automated procedure to collect and process the global GPS tracking data for precise
GPS orbits and clocks, then distribute the solutions to users (onboard or on the
ground) in a few tens of minutes to hours (near-real time) or seconds to minutes (real
time). Studies for real time orbit determination have shown that with precise GPS
orbits and clocks, the RMS accuracy at the decimetre level for radial and cross-track
components can be achieved a few hours after an initial cold start for T/P, and the
RMS accuracy was 20cm to 70cm for GPS/Met satellite, which has lower orbit

(700km) for which the drag and gravitational forces are less well modelled.

There are three basic strategies presently in use to determine precise LEO orbits with
GPS. They are the dynamic, the kinematic or non-dynamic, and the hybrid or

reduced-dynamic strategies.

1.1.3 Onboard Orbit Determination

Onboard Orbit Determination invariably performs orbit computations in the receiver
or onboard the electronics in real time. The techniques involved in this application
also include direct GPS-based orbit determination, and differential GPS precise orbit
determination (POD). The choices depend on the signals available for the receiver
in orbit to use: standalone GPS signals and differential messages. For instance, a
normal space GPS receiver can only perform direct GPS-based OD determination
with standalone GPS signals, while a GPS/WAAS or GPS/EGNOS capable receiver
can choose to use the differential techniques for improved onboard orbit solutions. In
any case, in addition to onboard navigation solutions (ONS) directly obtained from

the space GPS receiver, the central point of onboard OD is the implementation of the



above OD capability on the orbit electronics for improved or precise orbit solutions.
Due to significant differences in computing resources and requirements for orbit
information between onboard and on the ground, this implementation is challenging
both engineering and science. The focus of this work is to develop efficient models
and algorithms for onboard orbit determination, mainly addressing the scientific

challenges, instead of the engineering ones.

In contrast to onboard OD, a closely related concept is the ground-based POD and
ground-based autonomous LEO tracking for real time orbit information using GPS
measurements and ground-based satellite tracking and orbit determination. Table 1.1
summarizes the characteristics of these concepts, showing the similarity and
differences of these methods. It is seen that onboard OD makes use of limited
resources to achieve the orbit accuracy for advanced space engineering and certain

scientific applications.

1.2 The Objectives and Main Contributions of the Study

1.2.1 Major Research Objectives

The overall objective of this research is to develop a robust and accurate onboard
orbit determination (OD) algorithm for Low Earth Orbiting (LEO) spacecraft with
onboard GPS facility. The goal is to autonomously process GPS pseudo-ranges, in
real time, to produce orbit estimates with RMS accuracy at metre levels for satellites.
“Real time” here means that the orbit state with the given accuracy is made available
within seconds to tens of minutes after the last observation is made. In particular, the
research will address a number of scientific challenges for onboard orbit

determination, in order to achieve the overall objective.



Table 1.1 Summary of GPS-based orbit determination.

Ground-based Precise
Orbit Determination
(Ground-based POD)

Ground-based real
time LEO tracking or
Real time Orbit
Determination (RT
OD)

Onboard LEO Orbit
Determination
(Onboard OD)

Observations
available

All GPS measurements
and others such as SLR
and precise GPS orbits

Standalone or DGPS
measurements and
other sources of ground
tracking data

Standalone GPS code
measurements and
phase smoothed GPS
code measurements

Mission objectives

Provide post-fitted
orbit solutions as
accurately as possible,
with delay hours to
days

Provide predicted LEO
orbit knowledge for
real time tracking and
ground-based
spacecraft operation
application

Provide accurate orbit
knowledge on board
spacecraft for
autonomous operation
and navigation in real
time or near real time
in space

Methods

Differential GPS POD,
with data from global
GPS tracking network

Direct GPS orbit
estimation, with GPS
broadcast orbits or

Direct GPS orbit
estimation, with GPS
broadcast orbits from

or precise GPS orbits precise predicted orbits | GPS or Geostationary
from the networks satellites
Degree of autonomy | Desirable, but not Required Required

required

Orbital positional
accuracy (3D RMS)

Centimetres to sub-
metre

Metres to tens of
metres

Typically metres to ten
metres, moving
towards sub-metre

Orbital velocity
accuracy (3D RMS)

Typically 0.1mm/s to
mm/s

Typically cm/s

Typically m/s to cm/s

Applications

Geosciences, ocean
altimetres, gravity
recovery, imagery
satellites

Satellite tracking, and
operation

Autonomous
navigation, orbit
knowledge for space
engineering in future

Develop techniques to simplify the orbital dynamical models for onboard
processing, in order to reduce the computing burden, which is critical for
onboard computing, while possibly retaining full model accuracy. One focus
is the Earth gravity acceleration approximation, aiming to achieve the
accuracy of a 70x 70 spherical harmonic model with the computational load
of a 5x5 gravity model. Simplification of the solar & lunar ephemerides,
atmosphere density model and orbit integrator will also be discussed. All
these techniques together enable a precise accuracy onboard orbit integrator.

Examine and implement efficient quality control and improvement
algorithms for onboard GPS measurements, for instance, outlier detection
and phase smoothing, which will also lead to reduction of data points from

seconds to minutes for more efficient onboard computations.



e Develop and test the short-arc orbit filtering techniques for onboard orbit
determination. With respect to the existing Kalman recursive filtering, the
short-arc method is more stable because more measurements are used. On the
other hand, short-arc methods require less orbit dynamical model information
compared to long-arc methods. The goal is to achieve a few metres orbit
accuracy with data arc as short as a few revolutions of LEO orbits, using
code GPS data.

e Establish a software platform to test and implement the above algorithms and
ground-based FedSat orbit determination. The software system includes orbit
dynamical modelling, GPS data processing and result analysis modules,
providing an effective technical basis for further studies. It also routinely
provides orbit determination service to the FedSat project, which gives tens

of metres positional accuracy with a half-day delay.

1.2.2 Benefits of the Research

Recent advances in spaceborne GPS technology have shown significant advantages
in many aspects the conventional technologies. On the one hand, accurate and
autonomous spaceborne orbit determination onboard spaceborne can result in
significant savings in spacecraft life cycle cost, in power, and in mass. The 21%
century space engineering requires onboard orbit accuracy of better than 5 metres.
On the other hand, it is desirable that sub-metre accuracy is achievable onboard for
scientific and engineering applications, such as in the case of imaging satellites. The
research focuses on the development of precise GPS-based autonomous orbit
determination techniques for space engineering and science applications. This topic
has attracted significant attention [Ashkenazi, et al., 1997; Gold, et al., 1994a; Hart,
et al., 1996; Lichten, et al., 1995a; Pradines, et al., 1993; Spardley, 1993; Tu, 1990].
With GPS Selective Availability (SA) being turned off on 2 May 2000, it has
become more attractive for space engineering. Space mission planners need very
accurate states of the satellites, i.e., position, velocity and/or attitude information, in
real time or near-real time at an accuracy of centimetres to tens of metres, while
minimizing dependence on ground-based tracking assets [Cruickshank, 1998]. In

addition, it is desirable to perform OD in real-time, onboard an Earth orbiting



satellite, where accurate position, velocity and attitude information are made

available for other satellite instruments [Hart, et al., 1996].

Several onboard orbit determination systems have been developed in previous years.
They will be discussed in detail in Chapter 2. We proposed an onboard orbit
determination method addressing both the accuracy and stability problems of current

methods.

1.2.3 Scope of the Research

This research focuses on software aspects of the onboard GPS orbit determination
problem. As the computation will need to take time to complete after each data
output, strictly speaking, this is a near-real time solution. However, by prediction,
the system can provide real time precise orbit knowledge to cover the delay due to
the computation, which can be several to tens of minutes. In addition, although the
techniques have been thoroughly tested using real LEO GPS data, additional efforts
are needed to implement the algorithms into a real hardware platform. Issues of
computing speed; memory usage and power consumption must be re-visited from the
point of view of software and hardware engineering. To reach an optimal
performance, revisions to the proposed methods are also required for optimal

portability to the actual computing system.

1.3 Organization of the Thesis

This thesis is organized as follows:

Chapter 1 gives a brief overview of the Global Positioning System (GPS), followed
by an introduction to GPS-based orbit determination for Low Earth Orbiters (LEO).
The objectives and scope of the research are outlined, and the structure of the thesis

is provided.

Chapter 2 summarizes the principles of existing onboard orbit determination
techniques. A review of LEO missions using GPS for tracking and navigation is
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given first. Next, the performance of the onboard orbit solutions in these missions is
discussed. Following this, we introduce three existing algorithms for onboard orbit
determination: extended dynamic filter, phase-connected kinematics filter and
onboard SGP4 filter. Finally, we outline the ideas of the short-arc orbit filter to be

studied in this thesis.

Chapter 3 first gives a detailed review of the orbit dynamical models. Considering
the limitations of power and computing capacity onboard a spacecraft, a full
dynamical model is not possible, especially on small LEO satellites. Model
simplification is discussed to make the onboard least squares filter feasible. In this
chapter, different schemes for orbit model simplification are examined and new

simplification methods are proposed.

Chapter 4 continues the study of orbital model simplifications and describes an
alternative method to calculate the Earth gravity acceleration. An Earth gravity
acceleration approximation method was developed. Instead of calculating the
harmonic coefficients using recursive algorithm, an Earth pseudo-centre grid was
generated on the ground and a simple two-step interpolator was used to recover the
gravity acceleration on-the-fly. The results show that the computational burden of
the method is equivalent to that of a 5x5 gravity model with the accuracy of a
70 x 70 model.

Chapter 5 deals with quality control and improvement of onboard GPS
measurements and navigation solutions, which are normally worse than those
obtained on the ground due to the harsh observation conditions in space. This mostly
concerns the issue of outlier detection. In addition, the chapter develops phase
smoothing procedures to allow clean and compacted GPS data for efficient onboard

orbit estimation.

Chapter 6 discusses the least square filter techniques. The orbit dynamics of LEO
satellites will be analyzed. An effort is made to test the simple, but robust, dynamic
method- a short-arc batch estimation, in order to address both orbit accuracy and
computational burden issues for onboard orbit determination with GPS code

measurements. Furthermore, the sliding-window short-arc method is implemented to
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fulfill the requirement for near-real time orbit determination. It updates the
processing arc every 5 ~ 40 minutes, and generates the orbit solution in 10~40

minute delays with metre-level accuracy.

Chapter 7 presents strategies and results of the Australian Federal Government
Satellite (FedSat) orbit determination. The requirement for FedSat orbit
determination will be outlined and its onboard GPS receiver operation limitations
analyzed. The orbit determination results with different methods are presented and
discussed. The research effort finally leads to the establishment of a ground-based

autonomous orbit determination system.

Finally, Chapter 8 summarizes the main findings of this thesis and gives suggestions

for future research.

This thesis focuses on the onboard orbit determination techniques that were
discussed in Chapter 2 through Chapter 6. The proposed onboard orbit determination
algorithms were successfully validated using real onboard GPS data collected from
Topex/Poseidon, CHAMP and SAC-C satellites. On the other hand, Chapter 7,
addressing the ground-based orbit determination for FedSat project, has been
included this thesis because this part of research work is very important during
author’s PhD study, and this part of work provided a basis, and test bed for the
onboard orbit determination development. Furthermore, the software package for

ground-based orbit determination is very helpful to the onboard research work.
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Chapter 2
A Review of Onboard Orbit Determination

Using GPS

In this chapter, a review for Low Earth Orbit satellite missions using GPS for
tracking and navigation is presented. Next, performance of the onboard orbit
solutions in these missions is discussed. Following this, four existing algorithms for
onboard orbit determination are introduced: onboard navigation solution, extended
dynamic filter, phase-connected kinematics filter and onboard SGP4 filter. The last
section outlines the concepts of the short-arc orbit filter to be developed in this

thesis.

2.1 Overview of GPS-based LEO missions and Onboard Orbit

Determination Systems

2.1.1 Missions Overview

Space missions that have included a GPS receiver or receivers for any number of
reasons are listed in Appendix B extracted from detailed information (Space Mission
Directory, 2004). Our interest is the onboard orbit determination in real time or near-
real time. Real time, in-orbit OD results are referred to sparingly in the following list
of literature. For convenience of analysis, Table 2.1 summarises the representative
missions that have GPS-based onboard orbit determination capacity in support of the
space engineering and scientific applications. According to this analysis, we make
the following observations:
e Although there have been over 100 missions that included a GPS receiver (or
receivers), only some of the missions since 1996 have had the onboard orbit

determination capability.
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e According to the results reported for many of the missions, the GPS-based
onboard navigation solutions are apparently worse than those achievable on
the ground. The onboard orbit filtering accuracy is not necessarily always
better than that of the onboard navigation solution, but a filter provides
continuous solutions;

e The high-accuracy onboard orbit results were often obtained only for the
high-cost space missions, and

e The existing onboard orbit determination algorithms mostly use an Extended

Kalman filter (EKF).

2.1.2 Onboard OD Software System

There are several real time onboard software systems used in the above missions.
Examples are JPL’s Real time GIPSY [Lichten, et al., 1995b], the Microcosm
autonomous Navigation System (MANS) [Collins & Conger, 1994], the Brazilian
National Institute of Space Research’s (INPE’s) ORBesT [Lopes & Kuga, 1997] and
GSFC’s GEODE [Hart, et al., 1997b]. Also, the University of Nottingham’s Institute
of Engineering Surveying & Space Geodesy (IESSG) developed another unnamed
system [Ashkenazi, et al., 1997]. There is currently no published information on

space qualified (actually flown in space) precise, real time OD software.

JPL’s Real time GIPSY (RTG)

RTG is an ANSI C version of GOA-II created by JPL to accommodate high data
rates (1 Hz) and improve portability to systems other than UNIX. JPL’s goal is to
incorporate all the precise models from GOA-II, make it suitable for embedded
systems such as GPS receivers and make it capable of real time processing [Bertiger,
1998]. Compiler options in RTG allow it to be scaled down to meet various
processor load requirements. To provide the best accuracy, RTG is to be used in
conjunction with a global Wide Area Augmentation System (WAAS) or a Wide
Area Differential GPS (WADGPS) system. Without WAAS or WADGPS, RTG has

shown 3D RMS values in the 4~6 meter range when used to process T/P data with
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the broadcast GPS ephemeris and SA on [Bertiger, et al., 1998]. The following is a
summary of the characteristics of RTG [Hurst, 2004]:
e Precise dynamic models for orbiting receivers: arbitrary-sized gravity fields,
drag model, empirical spacecraft accelerations, general-purpose variable step
integrator;

e General relativity and light time calculations;

e General purpose factorized Kalman filter: current state or epoch state,

process noise on any parametre, prediction residual test for outlier detection ;
e Minimized load size (400 Kbytes) with fast throughput for flight CPUs;

e Efficient CPU utilization: RTG will use ~ 0.1% of 99 MHz HP 9000/735
workstation for LEO flight GPS data processing (at 0.03 Hz data rate) and
RAD6000 (RISC) flight processors are about 2.5 times slower load size ~
400 Kbytes (currently);

e Other platforms include PowerPC 603e chip (RISC).

GEODE at GSFC

The GSFC-developed GEODE is a real time software analysis package [Hart, et al.,
1997b]. GEODE is highly modular, programmed in ANSI C and has been targeted to
UNIX and PC systems as well as the RAD6000 RISC microprocessor. It requires a
modest 400 Kbytes of computer RAM. GEODE was originally designed as
experimental software to fly on the SSTI Lewis satellite contracted by NASA to
TRW [Hart, et al., 1997a]. GEODE is implemented with an Extended Kalman Filter
(EKF), which feeds a real time state propagator. GEODE is designed to be hosted on
either a spacecraft flight computer, or in a GPS receiver’s processing unit. Pre-
launch orbit determination studies using GEODE indicate that 1o orbit accuracy of
10m in position, and 0.0lm/s in velocity may be attained in the presence of SA.
Below is a summary of relevant information concerning GEODE [Lee & Long,

1999]:
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Table 2.1 Summary of onboard GPS-based orbit determination missions and results.

Missions Orbit Determination Method Accuracy achieved
Space Flyer Unit (SFU), Onboard navigation solution (ONS) positional error of 200m and
March 1995, and extended Kalman filter (EKF) velocity error of 0.5m/s for

[Ichikawa, et al., 1995]

both ONS and EKF,

The Extreme Ultraviolet
Explorer (EUVE),

June 1992,

[Gold, et al., 1994a, 1994b]

EKF with Reduced Dynamic
Tracking (RDT) and single frequency
Group and Phase Inonospheric
Calibration (GRAPHIC) techniques.
The truncated Earth gravity model is
also used.

Produced real time total
position accuracies of about
60m (10) and velocity
accuracies of 1.5m (1o),
with occasional spikes of
over 500m and 5m/s for the
position and velocity,
respectively

PoSAT-1,

September 1993,
[Unwin, 1993, Unwin &
Sweeting 1994,1995]

Onboard navigation solution (ONS)
and onboard SGP4 filter. The
receiver was turned on for only one
orbit per day.

100m accuracy for ONS,
and 1.5km for onboard
SGP4.

The U.S. Advanced Research
Projects Agency (ARPA)
SATellite (DARPASAT),
March 1994,

[Cubbedge & Higbee 1994;
Nicastri, 1992; Mitchell, et

Onboard navigation solution (ONS)

Accuracy of 350m. The
navigation solution was
however compared to radar
range vectors

al. 1996]
GPS/MET, Onboard navigation solution (ONS) A receiver navigation
April 1995, solution accuracy of 46m

[Hajj, et al., 1995]

was achieved in one test.

Wake Shield Facility-02,
November 1996,
[Schltz, et al., 1995]

Onboard navigation solution (ONS)

Produced a solution
accuracy of 62.6m with a
post-processed least squares
fit of an orbit to a navigation
solution.

SSTI Lewis,
August 1997,
[Hart, et al., 1996, 1997a]

Onboard GEODE flight software
using an EKF.

Proposes real time total one
sigma position and velocity
accuracy of 20m and
0.03m/s, respectively

Bi-spectral Infra-Red
Detection (BIRD),
October 2001,

[Gill, et al., 2001]

Onboard navigation solution,
Onboard EKF filter and SGP4 filter.
Simplified orbital model is used.
Furthermore, an advanced numerical
integration scheme (RKF4R) was
implemented.

The ONS generates a 40m
accuracy solution. A peak
error of 25m and a filter
standard deviation of 5.6m
can be achieved with EKF,
and the orbit can be
predicted for 30 minutes
with the error of 90m.

FedSat,
December 2002,
[Feng, et al., 2003]

Onboard navigation solution (ONS)

A 3D positional RMS error
of 56m was achieved for
ONS solution.

e JGM-2 30x30 spherical harmonic gravity model;

e Solar and Lunar point mass 3™ body force model;

e Harris-Priester atmospheric drag model;

e Geometrical editing of measurements with high ionospheric errors;

e Broadcast GPS ephemerides used;
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e Extended Kalman Filter (EKF) implemented;

e UDU factorized state error covariance;

e Uplink of polar motion coefficients, accurate a priori state information and a
priori state error and process noise covariance terms;

e Processes pseudo-range measurements only.

During one test using the GPS/MET data it took less than one minute to process the
entire 24 hours of data on a 450 MHz Pentium II with 128 Mbytes RAM. The filter
converged after about two hours of data and yielded a converged 3D RMS error of

11.61m [Hart, et al., 1997b].

The University of Nottingham’s Study

In a study for the UK Defense and Evaluation Research Agency (DERA), The
Institute of Engineering Surveying & Geodesy (IESSG) at the University of
Nottingham developed an extended Kalman filter, using Reduced Dynamic Tracking
(RDT), to generate real time satellite position estimates with a radial RMS error of
1.08m lo and a 3D RMS error of 3.95m lo [Ashkenazi, et al., 1997]. IESSG used
real and simulated Standard Positioning System (SPS) data from T/P. They reported
the filter converged after approximately five hours [Chen, 1998]. They used a JGM-
2 45x 45 gravity field, a simplified drag model (due to the T/P’s relatively high
orbit), and broadcast GPS ephemerides. The application required approximately 500
Kbytes of computer memory and the code could produce solutions within one
minute of recording an observation. A trade study between microprocessor was also
performed finding a military standard 1750A microprocessor (8086 equivalent) to be

more than capable of producing the solutions each minute [4Ashkenazi, et al., 1997].
2.1.3 LEO Missions Used in the Simulation Experiments

To this end we have introduced four LEO missions using onboard GPS data in their
experimental tests. Their orbit characteristics are summarized in Table 2.2. These

missions are described below. The data sets collected from these missions will be

used in this thesis for experiments and analysis.
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Table 2.2 Summary of CHAMP, SAC-C, T/P and FedSat orbit characteristics.

CHAMP SAC-C T/P FedSat
Mean Orbit Altitude (kilometre) | 474 703 1340 802.92
Inclination (degree) 87.27 98.25 66 98.673
Eccentricity 0.00396 0.000655 0.000 0.002
Orbit Period (minutes) 94 99 112 100.9

Topex/Poseidon (T/P)

T/P is a joint project between the National Aeronautics and Space Administration
(NASA) and the French Space Agency, Centre National d’Etudes Spatiales (CNES).
The T/P satellite carries a 6-channel Motorola Monarch Receiver, GPS
demonstration receiver (GPSDR), which is capable of collecting dual-frequency

(L,/L,) data when the GPS anti-spoofing (AS) function is inactive.

CHAMP

The CHAMP satellite was launched in July 2000 into a circular orbit of 450
kilometres to support geoscientific and atmospheric research. The mission is
managed by GFZ in Germany. The GPS payload consists of a JPL BlackJack
receiver with 3 antennas, the one facing up provides data for precise orbit
determination services, the one facing down is for GPS altimeter studies and there is

a limb antenna for atmospheric sounding.

SAC-C

SAC-C is an international cooperative mission between NASA and the Argentine
Commission on Space Activities (CONAE). SAC-C will provide multi-spectral
imaging of terrestrial and coastal environments. It carries a TurboRogue III GPS and
four high gain antennas developed by the JPL. It is capable of automatically
acquiring selected GPS transmissions that are refracted by the Earth’s atmosphere

and reflected from the Earth’s surface.
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FedSat

FedSat is an Australian scientific micro-satellite mission, a 50cm cube weighing
approximately 58 kg. It was launched in December 2002 by Japan's National Space
Development Agency. Its purposes are: to establish Australian capability in micro-
satellite technologies; to develop expertise necessary for sustaining those industries
and profiting from them; to test and develop Australian-developed intellectual
property; and to provide a research platform for Australian space-science,
communication and GPS studies. FedSat is being developed by the Cooperative
Research Centre for Satellite Systems (CRCSS), which combines the resources and
skills of 12 Australian organizations. Contributions from each of the partner
organizations are doubled by the Commonwealth Government, under its

Commonwealth Government's Cooperative Research Centre's Program.

2.2 Onboard GPS Navigation Solutions

The direct orbit solutions that a GPS receiver onboard a spacecraft shall provide are
the onboard navigation solutions (ONS), also called “Single Point Positioning
(SPP)”solutions. The positioning accuracy was better than 100 metres in the
horizontal components, and better than 156 metres in the vertical component (at the
95% confidence level) when Selectivity Availability (SA) was the dominant source
of error for SPP solutions (introduced on 25 March 1990). After SA was turned off
on 1 May 2000, the improvement in instantaneous accuracy of GPS-SPP is clearly
seen for the period immediately before and after SA was ‘switched off’. Figure 2.2
shows this change for a terrestrial GPS receiver. Onboard stand-alone GPS
navigation solutions are as accurate in low earth orbit as solutions on the ground.
Currently a RMS positional accuracy of 10 to 20 metres is achieved by using the
civilian broadcast GPS signals. This provides the simplest way for the onboard orbit
determination. The results of previous LEO missions show a consistent accuracy,
normally tens to one hundred metres accuracy were achieved when the SA was

active, and tens metres accuracy in the absence of SA.
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Although the ONS solution can satisfy many space applications, dynamical filtering
techniques are still required in the following circumstances:

e when a higher orbit accuracy, for instance, at the metre or even sub-metre
level, is needed to satisfy advanced space engineering applications, including
satellite flying formation and docking, etc [Da Kuang, et al., 2001];

e where continuous and predicted orbit information is required, but GPS
navigation solutions are only available at discrete time epochs, especially
when onboard GPS operates intermittently. For instance, the Australia
Federation satellite - FedSat operates 2-by-10 minutes per orbit period,
because of the restrictions of the on-board power supply [Feng, 1999];

e where visible satellites are sometimes less than four, resulting in onboard

navigation solutions not being provided on a regular basis.

Figure 2.1 T/P (upper-left), SAC-C (upper-right), CHAMP (lower-left) and FedSat

(lower-right), respectively.
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Figure 2.2 GPS Single Point Position (SPP) accuracy before and after the SA
“switched off” for a terrestrial GPS receiver. [Hydraulics laboratory, 2004].

A positional accuracy of 10 ~ 20 metres satisfies most engineering requirements, and
this requirement may be satisfied by the ONS without any additional effort, Indeed,
ONS is the simplest OD strategy available, and desirable if the requirement can be
met. In reality, it seems that most onboard orbit determination applications do not
rely on the ONS solutions from the GPS receiver. To ensure robust and continuous
onboard orbit solutions, some kind of filtering process is needed. The following

sections will review different filtering strategies.

2.3 Extended Kalman Filter

An Extended Kalman filter provides a well established means for LEO orbit
determination, and is a popular algorithm choice for most onboard OD applications

due to its emphasis on both computing simplicity and accuracy. A Kalman filter-
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based orbit determination process generates estimates of the instantaneous spacecraft
state vector at discrete time steps that usually coincide with the arrival of new
measurements. It operates in a sequential manner and does not demand the storage of
previous measurements. However, it can properly use previous measurements and
orbital information through the adjustment of the Kalman Gain. The system model
errors can also be compensated for by means of process noise. These good

characteristics make it a good choice for onboard data processing.

2.3.1 The Observation Models

Typically, numerical methods of varying complexity are applied to propagate the
state vector between measurements. The satellite dynamical model is necessary for
this purpose. Due to the limit of onboard memory and computing capability, most
onboard applications use a simplified orbital model. This includes a truncated or
simplified Earth gravitational model, which omits higher order spherical items. By
reviewing the available onboard OD systems, a practical orbit model can be
described as:

e Using a truncated Earth gravitational model by considering only up to
spherical harmonic degree and order of 10, depending on different
requirements. Some missions even use a pre-tuned specific gravitation model.

e Only considering the Earth rotation matrix when transforming from Earth-
fixed frame to the inertial celestial frame (ICRF). This means the nutation,
precession effects are neglected.

e Ignoring the drag and solar radiation pressure, as well as the gravitational
perturbations from the Sun and the Moon.

e Using a simple Runge-Kutta 4(5) order integrator.

Of course, this only illustrates a general dynamical model for the onboard filter, and

some missions use a more complicated model. Some even use a Keplerian one.

For the onboard orbit determination problem, the linear continuous state propagation

equation and the observation state equation can be generally represented as:
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{xt = ®t,l*1xt-1 + Btut (2‘1)

z, =Hx, +g,
where @, and B, are known functions of time. The noise term u,is a random

process with specified mean and covariance, i.e.,

E(,)=1,, E(u,)=Q, (2.2)
Similarly, the measurement noise term ¢, is statistically described as:

E(g,)=0, E(se, )=R, (2.3)
The following Extended Kalman Filter is based on these basic equations and

assumptions [Kalman, 1960, Kalman & Bucy, 1961].
2.3.2 The Extended Kalman Filter

The major difference between the traditional Kalman algorithm and the Extended
Kalman filter lies in the fact that the latter does not keep the reference trajectory

constant, but updates it based on the new estimate of x [Minkler, 1993]:

Given the following parametres:
e An a priori estimate of x, X, ,;
P

e The associated covariance matrix for X A

=12

e Observation z, at time ¢ with associated observational error covariance
matrixR, .

If the process noise u, is not considered, the extended sequential computational

algorithm for the optimal estimate of x at any time ¢ is here summarized. Integrate or
propagate numerically from ¢ —1 to #:
1. Giving the following parametres:

X=/(X0, X, =% (2.4)

(I)t,t—l = qu) q)t—l,t—l =1 (2.5)

t,t—1°
2. Propagate (time update):

P=o, P o, (2.6)

te-1"¢

3. Compute the linearized measurements:
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Y =z, -G(X,,1) 2.7)

H, = {%} (2.8)
4. Compute the measurement updates:

K,=PH'[HPH +R,| 2.9)

P =[I-K H,[P (2.10)

x, =X, +K)Y,. (2.11)

2.3.3 Process Noise and Measurement Noise

To observe unmodelled motion, we model the time-varying satellite force as the sum
of a deterministic component (our standard dynamic model) and a stochastic
component. The latter is often called a process noise model. Augmenting a Kalman
filter with a process noise model is a way of telling the filter that the state transition

information in @, is incomplete—that there is another component that the filter

cannot predict, but that it can try to observe in the data and estimate at each time step

[Yunck, 1996].

In the context of orbit determination this means that at each time step, in addition to
applying the standard dynamic updates, the filter will examine the discrepancy
between the dynamic state estimate and the apparent state as indicated geometrically
by the measurements. From that discrepancy it will estimate a local correction to the

dynamic model, valid only over the update interval?, , ~¢, . When added to the

dynamic model that correction will reduce the disagreement between the

observations and the solution trajectory at time#,. As it proceeds through the data,

the filter will generate a sequence of local force model corrections, one at each
update time, bringing the solution trajectory into better agreement with the
observations [Feng, 1998]. That may be good or bad, depending on the quality of the
observations and the accuracy of the models. We must, therefore, take care to hinder
the local corrections from “chasing after” bad measurements. In other words, we

must consider the effects of the measurement outliers.
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Because the kinematic correction is geometric, it is vulnerable to weak geometry.
Momentary data outages or large position dilution of precision (PDOPs) will cause
the error to grow or the solution to fail. The kinematic solution, moreover, makes no
use of dynamic information—it is an empirical result constructed from the
measurements. Often, however, dynamic information is at hand which, if properly
treated, can improve the result. When geometry weakens or fails, dynamic

information can then “carry” the solution with little loss of accuracy.

In current practice, the strategy is to achieve a balance of dynamic and geometric
information in the orbit solution by imposing a judicious constraint on the process
noise parametres. In an optimal solution (under the assumption of a Gauss-Markov
process noise model), the time constant will reflect the actual correlation time of
dynamic model errors, and the steady-state variance, the actual error in the dynamic
model. The geometric corrections will not be free to “follow” the measurements
wherever they lead, but will be bound by the constraint to the dynamic model. The
relative weight will, in fact, shift back and forth between dynamic and geometric
information as the observing strength varies. When geometry is weak, the process
noise constraint will hold the correction close to the dynamic solution; if there are no
observations at all, no correction can be computed and the dynamic solution is
produced. This optimised technique is known as reduced dynamic orbit

determination.

In the dynamic solution, random error is minimized (because the fewest parametres
are adjusted), while dynamic error is fully expressed. This is reversed in the
kinematic solution as many parametres are adjusted, amplifying the effect of data
noise while absorbing dynamic error. The reduced dynamic solution seeks the

optimal balance to minimize overall errors.

This raises the question of how we choose the process noise weighting. Often there
is some prior knowledge of the quality of the force models in use and the consequent
position error expected. Computer simulations or covariance analysis can then
suggest a reasonable a priori weighting. When real data become available, a variety
of strategies for tuning the reduced dynamic constraints become possible. One

approach is to observe the magnitude of the process noise corrections; if they
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approach the constraints, the constraints should be relaxed; if they fall well short,
then the constraints can be tightened. Another technique is to compare orbit solutions

on short overlapping segments and tune the constraints to minimize the discrepancy.

2.3.4 Discussion

Many available onboard orbit determination systems show that positional accuracy
of metres to tens of metres can be achieved, with a convergence time of around
several hours. This is satisfactory for most applications. One of the difficulties of the
extended sequential algorithm is that the reference (nominal) trajectory integration
(propagation) needs to be restarted at every step. On the other hand, the reference
trajectory update might still lead to divergence. This is especially true if the update

of the nominal trajectory is performed from the beginning using estimates of x, that

might still be far from the true state. This algorithm, as was the case with the
previous sequential algorithm, has the problem of divergence caused by the

asymptotically approach to zero of the covariance matrix [Van Dierendonck, 1992]

2.4 Phase-connected Kinematic Filter

Alternatively, a complete geometric approach for onboard orbit determination has
been devised [Bisnath & Langleg, 2001]. It does not use any dynamic model but
requires both code and phase measurements. The strategy relies on combining the
time-continuous measurement strength of the pseudo-range and carrier-phase

observables.

2.4.1 Phase-connected Point Positioning Filter

The use of only GPS measurements for satellite positioning can be achieved in a
number of different ways ranging from pseudo-range point positioning to some form
of combined pseudo-range and carrier-phase positioning. The latter approach is used
in this strategy and its basic form can be attributed to the seminal work of Hatch
[1982]. The crux of carrier and pseudo-range combination is the use of averaged

noisy code-phase range measurements to estimate the ambiguity term in the precise
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carrier-phase range measurements. The longer the pseudo-range averaging, the better

the carrier-phase ambiguity estimate.

The carrier/pseudo-range averaging periods are typically short in spaceborne
applications due to the relatively fast motion of the LEO, necessitating frequent
changing of GPS satellites being tracked by the receiver. Such a situation does not
allow for the highest precision of the technique to be attained. However by
performing the averaging in the position rather than the range domain, previous
position solutions can be used for estimating present and future position solutions. In
essence, the pseudo-ranges provide coarse position estimates and the relative carrier-
phase measurements provide precise positioning change estimates. The position-
change estimates are used to map all of the position estimates to one epoch for

averaging.
2.4.2 Filter Models and Solution

The liberalized filter observation model in matrix form is:

-P° 0 H, | & 7,
SO o R (2.12)
5¢z - 5¢z - Hz—l Ht 5X; £¢t,t—l

where P and P’ are the pseudo-range measurement and computed value,

respectively; ¢, and 5¢’ are the time-differenced carrier-phase measurement and
predicted value, respectively; ox, , and ox, are the estimated corrections to the LEO
receiver position and clock at epochs #-/ and ¢, respectively; H, , and H, are the
measurement partial derivatives with respect to the LEO receiver position and clock

estimates for epochs #-/ and ¢, respectively; &”, and &, are the measurement

errors associated with P, and J¢,, respectively; and C, and Care the covariance

matrices for P, and ¢, , respectively.

t

The best solution for Equation (2.12), in a least squares sense, is:

o) ) e e men
~H/C;'H,, H/(C, +C,HH,

-1
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—-H” C'w

1e T (2.13)

HC'w +HC'w '
t~p " p t¢ ¢

where X =X, +Jx; w,and ware the misclose vectors for the pseudo-ranges and

time-differenced carrier-phases, respectively; and C™'._, is the LEO receiver position

and clock covariance based on the last epoch’s observations.

The position estimate at the previous epoch, 7-1, is used as an approximate value to
estimate the position at epoch ¢ and so on for the moving LEO. Equation (2.13)
represents a kinematic, sequential least squares filter. This type of filter is a subset of

the general Kalman filter.
2.4.3 Discussion

Theoretically this geometric method utilizes the full potential of the GPS
measurements, and makes use of the readily available GPS data products. The
dynamics-free nature makes it a very simple and efficient orbit determination
method for LEO. On the other hand, it demands good GPS geometry as well as

sufficient phase connection arc length.

Some ground-based simulation results have been reported. The results suggest an
overall 100cm 3D RMS accuracy for T/P [Bisnoth & Langley, 2001], and for periods
of good geometry, the accuracy can be improved considerably to the 30cm level.
Report [Bisnath & Langley, 2002] also suggests that 40cm in radial component and
30cm in each of the along-track and cross-track components have been achieved for
CHAMP. But these results were obtained from IGS orbital products and precise GPS
satellite information, such as the GPS satellite phase wind-up modelling, sub-diurnal
variations in the Earth rotation, etc. It is estimated that metre level accuracy could be
achievable if using the broadcast ephemerides and less complex satellite model

information.
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2.5 Onboard Simplified General Perturbations- SGP4 Filter

In a typical onboard Extended Kalman Filter the disadvantage of numerical orbit
prediction may be overcome by the use of analytical orbit models, which can be
evaluated at arbitrary times and do not require a step-wise integration of the
trajectory. This allows offline predictions over mid- and long-term time scales
(multiple revolutions to multiple days) at the expense of decreased short-term (<1
revolution) accuracy. The Simplified General Perturbations- SGP4 model [Hoots &
Rochrich, 1980] is a common choice because of its widespread application for near-
circular, low altitude satellites, and its high communality with existing ground
equipment and commercial off-the-shelf software products. The onboard SGP4 filter
is formulated for the direct estimation of the SGP4 mean orbital parametres from the

onboard GPS measurements.
2.5.1 SGP4 Model Overview

Developed in 1970 by NORAD, the SGP4 (Simplified General Perturbations) model
is based on the analytical theory of Brouwer and accounts for the Earth gravitational

field through zonal terms J,,J;,J, and the atmospheric drag through a power

density function assuming a non-rotating spherical atmosphere. Short periodic
perturbations, however, are only modelled to first order (J,). The SGP4 model,
which is denoted here by the symbol S in the sequel, relates the spacecraft state
vector as:
r _

v, = (ﬁ} ~S,(a,,B) (2.14)
at time 7 to a set of mean elements:

&y = (ay,€y»igs Qs @y, M) (2.15)
at epoch 7,and a ballistic coefficient B = C,, 4/ m describing the effective satellite
area-to-mass ratio. The SGP4 orbit model comprises the computation of secular and
long-periodic perturbations of the orbital elements from which a preliminary state
vector is computed. Upon adding the short-periodic perturbations, an approximate

osculating state vector is obtained. In total the SGP4 model is considered a 6-
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dimensional, continuous and differentiable function of time, dependant on seven
dynamic parameters. A detailed description of the SGP4 model is given in [Hoots &
Rochrich, 1980].

2.5.2 Osculating to Mean Elements Conversion

A different parametreization of the SGP4 model is required for the adjustment of
orbital parametres from observations. The so-called ‘mean SGP4 state vector

concept’ can be expressed as the mean state vector at epoch?, [Herman, 1998]:
Yo = K(a,) (2.16)
where ¢, denotes the SGP4 mean elements at the same epoch. The expression:

y, = S(K™'(¥,),B) =s,(x) 2.17)
which relates the osculating state vector for a given time ¢ to the combined parametre

vector x=(y,,B) via the composite function s. Compared to the original

formulation, s is non-singular even for circular or equatorial orbits and the partial
derivatives of s with respect to the orbital parametres are well defined throughout the
phase space of interest.

For epoch ¢, and a given ballistic coefficient B, we can get:

W =Yoo B =0+ 0o =sG0 B k) @.18)

This provides a useful point-to-point conversion from osculating to mean state

vectors.

2.5.3 SGP4 Elements Estimation from GPS Measurements Using Kalman Filter

A classical Kalman filter, estimating the instantaneous state vector, is likewise
undesirable due to the non-trivial mapping of osculating to mean orbit information.
As a solution to this problem, an extended epoch state filter is considered, which
processes all the measurements sequentially (and only once) to update an a priori
value of the mean state vector at epoch, as well as its covariance. In contrast to the
classical Kalman filter the epoch state filter does not include a state update, since
propagation of the estimated state to the measurement epoch is not required. Instead

it consists of a measurement update only, which comprises the computation of the
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Kalman Gain, correction of the current parametre estimate and the computation of
the a posteriori covariance. The linearized measurements model function can be

expressed as:

h,(x,)=0, x(1,,0, ;) xs(X,,) (2.19)
which is evaluated with the latest estimate X, , of the parametre vector. Here
0, =R _(GHA(?)) denotes the Earth rotation matrix that describes the

transformation from the equator and equinox of date to the Earth-fixed Greenwich

meridian system. Likewise, the partial derivatives H, , = ¢h, /0x,_, of the computed

measurements at time ¢ are computed with respect to the estimated parametre vector

X, , as obtained from all previous measurements. This is a standard extended Kalman

filter, and the resulting filter equations are given by Equation (2.9) ~ (2.11).

2.5.4 Discussion

Compared to classical Kalman filters using numerical orbit models, this method can
cope with low measurement rates and data gaps of up to several days in size. Its
built-in capability to adjust a free drag parametre as well as the analytical
formulation of the orbit model facilitates mid-term forecasts and allows the
implementation of onboard algorithms for the prediction of station contact or eclipse
times. On the other hand, due to the limit of the SGP4 model itself, the short-term
orbit solution accuracy is far less than the numerical method. It is around 1000

metres.

PoSAT-1 mission used such a SGP4 filter and generated an approximate 1.5km orbit
accuracy using only one orbit data per day [Montenbruck & Gill, 1996]. Some
simulation experiments also have been carried out using GPS/MET and MOMSNAV
(MIR) mission data, and also around lkm positional accuracy was achieved. The
detailed result of SGP4 filter from the BIRD mission haven’t been published, but the

same results also were achieved through their simulation studies.
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2.6 Proposed Onboard Orbit Determination Methods

2.6.1 Motivations

The purpose of this research is to develop an orbit determination system providing
metres to sub-metre level positional accuracy and mm/s velocity accuracy in near-
real time to real time (normally means minutes to tens minutes after last GPS
observation); while the computional burden is kept within the memory and
computing capability limits for most LEO satellites. For the existing solutions and

methods, we have the following observations:

e First of all, onboard point positioning solution can provide 10~20 metres
positional accuracy, but the solution is vulnerable and it cannot provide
continuous or predicted orbit information, thus the point positioning solution

is not suitable for many missions.

e Secondly, a sequential Extended Kalman filter-based dynamical orbit
determination process generates estimates of the instantaneous spacecraft
state vector at discrete time steps that usually coincide with the arrival of new
measurements. Such OD system is a quite simple filtering process, depending
on the underlying dynamical model, and generates better results than the
navigation solution. But the Kalman filter is really tricky one, with the
stability being the most important issue. To achieve a satisfied result, process
noise should be considered in the filter. The dedicated treatment of the
process noise and the measurement weight scheme are the key issues for a
stable Kalman filter, and this treatment is a challenge most of the time.
Another problem with the Kalman filter is the convergence time, as it usually
takes several hours to converge, which is not a problem for continuous
operational GPS, but problems arises when the intermittent operation model
is used. That means the Kalman filter will need initialization and re-

convergence.
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The phase-connected kinematic method is suitable for onboard processing
because it doesn’t require any dynamic information. But it requires good
pseudo-range measurement quality and good GPS satellite geometry, which

is not always available.

Furthermore, the SGP4 filter is not suitable for our purpose simply because
of its limited accuracy. It could be useful as a long-term moderate accuracy

orbit predictor, but not for a high accuracy real time onboard filter spacecraft.

Based on these considerations, research challenges to implement a near-real time

onboard orbit determination system have been identified. These can be summarized

as:

e how to increase the OD accuracy while maintaining the onboard
computing burden to an acceptable level;
e how to increase the stability of the onboard filter; and

e how to satisfy the near-real time (even real time) requirements.

2.6.2 Summary of the Proposed Methods

To address these technical challenges a near-real time orbit determination method is

proposed in this dissertation. The method has the following characteristics:

Using the orbital model simplification techniques to be discussed in Chapter
3, and the Earth gravity approximation method to be tested in Chapter 4.
These simplifications reduce the computational burden dramatically and
retain the high accuracy of the complex models.

Using a sequential carrier-phase smoothing method to improve the code
measurement quality can greatly increase the orbit determination accuracy.
Furthermore, a sliding-window processing method is proposed to reduce the
onboard memory usage for the measurements as well.

Using a stable weighted least squares filter with short-arc length, from 15
minutes to 2 hours, with a sliding-window method, the filter solution is

available with 5~30 minutes latency
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e Optionally the method has the ability to predict the orbit for 1 hour, and meet

the requirements of many real time applications.

Table 2.3 gives a summary of proposed techniques and objectives. We discuss these

techniques in the following chapters.

Table 2.3 Summary of research efforts toward a near-real time onboard orbit

determination system.

Lunar and solar ephemerides tables
Celestial parametres interpolation
Atmospheric models

Integral equations

Techniques Objectives
Orbit dynamical Simplifications: Reduce the onboard
models e Gravity model approximation computational burden

and retain the full
model accuracy.

astronomy, geodesy, GPS and estimation;
Independent software modules of orbit
integration, GPS data editing, GPS
ephemerides calculation, orbit filtering,
smoothing, etc.

Linear models: ¢ Closed form state derivations Reduce the
Observation and e Closed form GPS single point positioning computational burden
state transition by simplifying the
equation state transition matrix
computing, and give
an initial orbit
estimation without
initial input.
Observations o Effective outlier detection to control quality | Increase the GPS code
improvement of code data measurement quality
e Phase smoothing for improved measurement | and reduce the onboard
accuracy memory usage.
e Stochastic models
Orbit Estimation e Short-arc orbit estimation Achieve metre level
e Sliding-window OD orbit determination
accuracy with 20~40
minutes latency;
Software e A comprehensive library of data processing Establish an orbit
development routines in the area of mathematics, determination platform

to facilitate this
research and FedSat
OD projects.
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Chapter 3
Simplifications of Dynamical Models for Low

Earth Orbiters

In this chapter, a detailed description of the orbit dynamical models is given to
provide a basis for the proposed method, based on precise dynamical models and
precise orbit numerical integration approaches. Due to the limitation of power and
computing capacity onboard a spacecraft, full accuracy dynamical models are not
realistic, especially on small satellites, hence different schemes for orbit model
simplifications are examined and new simplification methods are proposed.

3.1 Orbit Dynamic Models for LEO

Mathematical models employed to describe the motion of a LEO satellite can be
divided into three categories:
e the gravitational forces acting on the spacecraft consist of the Earth’s central
body gravity, non-spherical geopotential, third-body perturbations; and
e the non-gravitational forces consist of drag, solar radiation pressure, Earth
radiation pressure, and thermal radiation acceleration; and
e un-modelled or mis-modelled forces, such as solid earth tides, ocean tides,

relativistic effects, Earth rotational deformation, etc.

Therefore, the equations of motion of a near-Earth satellite can be described in an
inertial reference frame as:

F=a,+a, +a,. (3.1)
where ¥ is the position vector of the centre of mass of the satellite, a, is the sum of

the gravitational forces acting on the satellite, a,  is the sum of the non-gravitational
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forces acting on the surfaces of the satellite, and a_,, are the un-modelled forces

which act on the satellite due to either a functionally incorrect or incomplete
description of the various forces acting on the spacecraft, or inaccurate values for the
constant parametres which appear in the force model.

In the following section the basic time and coordinate systems used in the orbit
determination are first briefly described, followed by a detailed description of the

force models.

3.1.1 Time and Coordinate Systems
Time System

An orbit integration problem involves several time systems. From the measurement
systems, satellite laser ranging measurements are usually time-tagged in UTC
(Coordinated Universal Time) and GPS measurements are time-tagged in GPS
System Time (referred to here as GPST). Although the second length of both UTC
and GPST are based on atomic time standards, UTC is loosely tied to the rotation of
the Earth through the application of “leap seconds” to keep UT1 and UTC within a
second. GPST is continuous to avoid complications associated with a discontinuous
time scale [Milliken & Zoller, 1978]. Leap seconds are introduced on January 1 or
July 1, as required. The relation between GPST and UTC is:

GPST = UTC + n (3.2)
where n is the number of leap seconds since January 6, 1980. For example, the
relation between UTC and GPS-ST in mid-July 1999 was GPST = UTC + 13
seconds. The independent variable of the near-Earth satellite equations of motion
(Equation (3.1)) is typically TDT (Terrestrial Dynamical Time), which is an abstract,
uniform time scale implicitly defined by the equations of motion. This time scale is
related to the TAI (International Atomic Time) by the relation:

TDT = TAI + 32.184s (3.3)

The planetary ephemerides are usually given in TDB (Barycentric Dynamical Time)
scale, which is also an abstract, uniform time scale used as the independent variable
for the ephemerides of the Moon, Sun, and planets. The transformation from TDB to
TDT with sufficient accuracy for most applications has been given by Moyer [1981].
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For a near-Earth missions like T/P, it is unnecessary to distinguish between TDT and
TDB. New time systems are under discussion by the International Astronomical
Union. This document will be updated with these time systems, as appropriate.

Coordinate System

The inertial reference system adopted for Equation (3.1) for the dynamic model is
the ICRF geocentric inertial coordinate system, which is defined by the mean
equator and vernal equinox at Julian epoch 2000.0. The Jet Propulsion Laboratory
(JPL) DE-405 planetary ephemeris [Standish, 1998], which is based on the ICRF
inertial coordinate system, has been adopted for the positions and velocities of the
planets with the coordinate transformation from barycentric inertial to geocentric

inertial.

Tracking station coordinates, atmospheric drag perturbations, and gravitational
perturbations are usually expressed in the Earth-fixed, geocentric, rotating system,
which can be transformed into the ICRF reference frame by considering the
precession and nutation of the Earth, its polar motion, and the UT1 transformation,
The 1976 International Astronomical Union (IAU) precession [Lieske, et al., 1977,
Lieske, 1979] and the 1980 IAU nutation formula [Wahr, 1981; Seidelmann, 1982]
with the correction derived from VLBI analysis [Herring, et al., 1991] will be used
as the model of precession and nutation of the Earth. Polar motion and UT1-TAl
variations were derived from Lageos (Laser Geodynamics Satellite) laser ranging
analysis [Tapley, et al., 1985; Schutz, et al., 1988].

3.1.2 Gravitational Forces

The gravitational forces can be expressed as:

a, =a,, +a, (3.4)
where

a,, = perturbations due to the geopotential of the Earth

a, = perturbations due to the Sun, Moon and planets
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Geopotential

The perturbing forces of the satellite due to the gravitational attraction of the Earth

can be expressed as the gradient of the potential U, which satisfies the Laplace
equationV?U =0:
VU=V(U,)=a,, (3.5)

where U, is the potential due to the solid-body mass distribution.

The perturbing potential function for the solid-body mass distribution of the Earth
U, is generally expressed in terms of a spherical harmonic expansion, referred as

the geopotential, in a body-fixed reference frame [Kaula, 1966; Heiskanen & Moritz,
1967]:

i

U, (n4 @)= M, GMe izl:(ar"  (sing)[C,, cosmi+ S, sinmi]
=1 m=0
(3.6)
where
GM, = the gravitational constant of the Earth
a, = the mean equatorial radius of the Earth
c,,.S,, = normalized spherical harmonic coefficients of degree / and
order m
P, (sin¢) = the normalized associated Legendre function of degree / and
order m
rog, A = radial distance from the centre of mass of the Earth, the

geocentric latitude and the longitude of the satellite

To ensure that the origin of spherical coordinates coincides with the centre of mass

of the Earth, we defineC,, =C,, = S,, =0.

N-Body Perturbation

The gravitational perturbations of the Sun, Moon and planets can be modelled with
sufficient accuracy using point mass approximations. In the geocentric inertial

coordinate system, the accelerations can be expressed as:
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r, A,

where
G = the universal gravitational constant
M,  =mass of the i-th perturbing body
r, = position vector of the i-th perturbing body in geocentric inertial
coordinates
A, = position vector of the i-th perturbing body with respect to the

satellite

The values of r, and M, can be obtained from the Jet Propulsion Laboratory

Development Ephemeris-405 (JPL DE-405) [Standish, 1998],

3.1.3 Non-gravitational Forces

The non-gravitational forces acting on the satellite can be expressed as:

Ay = Agrag + A (3.8)
where

a,,, = perturbations due to atmospheric drag

a_,. = perturbations due to the solar radiation pressure

Since the surface forces depend on the shape and orientation of the satellite, the

models are satellite-dependent. In this section, however, general models are

described.

Atmospheric Drag

A near-Earth satellite of arbitrary shape moving with some velocity V in an

atmosphere of density o will experience both lift and drag forces. The lift forces are

small compared to the drag forces, which can be modelled as [Schutz & Tapley,

1980]:

1 C,4
adrag:_zp( 4

- WV, (3.9)

where
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P = the atmospheric density

\A = the satellite velocity relative to the atmosphere

V. = the magnitude of V,

m = mass of the satellite

C,  =thedrag coefficient for the satellite

A = the cross-sectional area of the main body perpendicular to satellite

velocity r

The parametre C,4/m is sometimes referred to as the ballistic coefficient. When

more detailed modelling is needed, the drag force on any specific spacecraft surface,

for example, the solar panel, can be modelled as:

1 C,|4,cosy]

Anetd = —EP(T)VrVr (3.10)
where
C, = the drag coefficient for the solar panel
4, = the solar panel’s area
y = the angle between the solar panel surface normal unit vector,
n and satellite velocity vector, r
‘AP oS 7‘ = the effective solar panel cross-sectional area perpendicular

tor

There are a number of empirical atmospheric density models used for computing the
atmospheric density. These include the Jacchia 71 [Jacchia, 1971], Jacchia 77
[Jacchia, 1977], the Drag Temperature Model (DTM) [Barlier, et al., 1977], DTM-
2000 [Bruinsma & Thvillier, 2000], MSIS-90 and NRLMSISE-00 [Hedin, 1996].
The density computed by using any of these models could be in error anywhere from
10% to over 200% depending on solar activity [Shum, et al., 1986]. To account for

the deviations in the computed values of density from the true density, the computed

values of density # can be modified during the orbit determination process.
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Solar Radiation Pressure

The Sun emits a nearly constant amount of photons per unit of time. At a mean
distance of 1 A.U. from the Sun this radiation pressure is characterized as a
momentum flux having an average value of 4.56x10°N/m?. The direct solar

radiation pressure from the Sun on a satellite is modelled as [Tapley & Ries, 1987]

g =P+ n)(%)vﬁ (3.11)
where

P = the momentum flux due to the Sun

n = reflectivity coefficient of the satellite

A = the cross-sectional area of the satellite normal to the Sun

m = mass of the satellite

v = the eclipse factor (v = 0 if the satellite is in full shadow, v = -1 if
the satellite is in full Sun, and 0<v <1 if the satellites is in partial
shadow)

u = the unit vector pointing from the satellite to the Sun

Similarly, the solar radiation pressure perturbation on an individual satellite surface,

such as the satellite’s solar panel, can be modelled as

|4, co5| .
A, = —P(——)v(u+n,n) (3.12)
where
4, = the solar panel area
1, = the surface normal unit vector of the solar panel
1% = the angle between the solar panel surface normal unit vector
n and satellite-Sun unit vector, u
‘AP cos 7/‘ = the effective solar panel cross sectional area perpendicular

tou

The reflectivity coefficient 7 represents the averaged effect over the whole satellite

rather than the actual surface reflectivity. Conical or cylindrical shadow models for

the Earth and the lunar shadow are used to determine the eclipse factorv . Since there
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are discontinuities in the solar radiation perturbation across the shadow boundary,

numerical integration errors occur for satellites which are in the shadowing region.

3.1.4 Other Perturbation Forces

Other non-gravitational perturbation forces, such as Earth solid tide, ocean tide,
Earth rotation tide, relativistic effect, Earth radiation pressure, thermal radiation
perturbations, yaw (steering) effect, etc., are too small to be considered here. Though
these forces should be considered in precise orbit determination, they can be
neglected in our research.

3.2 Simplification Schemes for Onboard Calculations

It is generally the case that more precise orbit state knowledge requires more
complex dynamical models. It is especially true for the LEOs, which are heavily
affected by the Earth’s gravity field and atmospheric drag. On the other hand, the
computing capacity onboard is always restricted for small to middle-sized spacecraft
in these two respects [Chiaradia, 2002]:

e Heavy computing load always lead to greater power consumption, but
limitations on power supply are always major problems for any satellite. The
energy source comes from solar batteries, but they are limited by the solar
panel size and battery.

e The cost of space-enabled hardware is very high for small satellites and the
hardware requires strong resistance to radiation, temperature and concussion

introduced by the violent space environment.

The onboard OD computing platform varies from mission to mission, but many
aspects affect the computing performance. As far as the onboard OD computing
burden is concerned there are two issues to address: CPU load and memory usage.
The requirement of both will impact on the total computional burden and power
consumption. CPU is the kernel part of the onboard computing facilities and it
determines the processing speed. Its performance is influenced by the clock
frequency, internal cache and memory bus bandwidth. For an onboard processing
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unit, memory can be divided into Random Access Memory (RAM) and Read Only
Memory (ROM). RAM operates at high speed and mainly provides the storage for
the onboard operating system and OD programs, but it functions only while the
system power is on, and thus cannot be used to store data. On the other hand, ROM
keeps alive for a much longer time with little battery power support, and thus can be
used to store static data. The performance of RAM and ROM can be evaluated by
the capacity and read/write speed. We address the detailed computional burden in

terms of CPU load (computing speed) and memory usage.

The onboard OD system comprises of several modules: data acquisition, GPS

ephemerides calculation, orbit propagation and filtering processing.

3.2.1 Orbit Integration Computional Burden

Given the initial condition and a specific orbit dynamical model, the orbit
propagation module calculates the satellite state vector and partials at a given time
using a numerical stepwise integrator. From the software point of view, the
computing load of orbit integration comes from two major computional tasks:

e Before the actual orbit integration start, some data must be made ready for
use. This includes the Earth gravity harmonic coefficients, Earth rotation
parametres, planetary ephemerides and geophysical data (such as F10.7 solar
flux and geomagnetic index for atmospheric density calculation). All data are
normally stored in onboard ROM and are fetched into RAM as soon as the
OD program starts. Except for the 1/0O process, the program also does some
initializations tasks on these data so that they can be used in subsequent orbit
propagation processes.

e The second task is the orbit integration itself. With state vector and

parametres known at ¢, , it calculates the state vector and partials step-by-step
from ¢, to ¢, for i = 1,...,n. There is a module to calculate the perturbation

accelerations and partials, which is actually where the heavy computing takes
place. It calculates the orbit perturbation accelerations and partials based on
the input parametres and the given orbital dynamical model. The computing

burden depends on how many times this module is called. Because we use .-

43



th order Runge-Kutta integrator, there are k steps for every ¢, to ¢,

1

propagation process. So there are nxk calls to the derivation calculation

function for the whole propagation.

We refer to the first part as the initialization module, and the second part as the
derivative computing module. Figure 3.1a shows the detailed flow chart of orbit

propagation. Figure 3.1b illustrates the derivation computing details.

Gravity data

- =

DE405 Data

Celestial Table Calculation

Polar motion Data
Gravity Acceleration Calculation

Geomagnetic Data

— Third Body Geopotential
~_
Integrator, v
HE) LIS ot RIS Other Perturbations

|
Iteration I v
[ FiniSh } [ Finish ]

Total I x J calls to the derivative
calculation function

Figure 3.1a Computional flow chart of orbit integration; Figure 3.1b Calculation
flow chart of derivatives computing module.

To understand the detailed computational burden, an orbit integration experiment
was designed. Both the computing time and memory usage were determined by
hundreds or thousands of repeated calls to these two modules; 200 calls and 20000
calls were used for the initialization module and derivation computing module,
respectively. Though we cannot get 100 percent accurate figures from this test, we
are more concerned with the relative computing burden distribution. The hardware

44



platform used was a PIII-1000Hz / 256M memory desktop computer, and the
software is the QUT CRCSS FODT package. Table 3.1 gives the memory usage test

results. This data was supposed to be uploaded to satellite once a month. Figure 3.2

and 3.3 gives the computing time distribution results for initialization and derivative

computing modules, respectively.

Table 3.1 Storage requirement of orbit integration.

Data RAM ROM

Polar Motion 64 bytes per 5 days One month storage (text format)
Usage: 10 days = 128 bytes Usage = 456 bytes

Atmospheric Density | 32 bytes per day One month storage (text format)

Model

Usage: 1 day = 32 bytes

Usage = 2,190 bytes

Planet Ephemerides Usage: 16,352 bytes One year storage (binary format)
Usage = 97,894 bytes

Earth Gravity Model | Usage = 21,586 bytes Usage = 88,935 hytes

Total: Usage = 38,098 bytes Usage = 189,475 bytes

= 37 Kbytes

= 185 Kbytes

Data description

Polar Motion

Using 5 days data from IERS bulletin B, which has 30 days prediction.

Atmospheric Density
Model

Using solar flux and the geomagnetic data, it is a daily complied data set.

The atmospheric density model used is the MSIS86.

Planet Ephemerides Using DE405 data from JPL, data can be truncated to the desired period.
Earth Gravity Using 70 x 70 JGM-3 model, and up to 120 order and degree of Legendre
Model polynominal coefficients.
9%
53% 36%

2%

O Polar Motion
O DE405

B MSIS86 Atmospheric Density
0O Gravity (70x70)

Figure 3.2 Computional time distribution of the initialization module.
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Drag
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m Solar Pressure, N-body,
Tide and Their Partial
Derivatives

& Other Perturbation
Forces

Figure 3.3 Computional time distribution for the partial derivatives computing

modules.

From these figures it can be seem that the Earth gravity, atmosphere density and
planetary ephemerides computing task take around 80% ~ 90% of computing time.
Compared to the derivation computing module, the computing burden of the
initialization module can be ignored. It is clear that 42% of the calculation burden
comes from the Earth geopotential computations, because of the recursive nature of
the spherical harmonic computation. The computing burden increases dramatically
with the higher order & degree of spherical harmonic expression, so we can use a
lower order gravity model, such as 10x10 ~ 30x 30. Another method, which will be
discussed in Chapter 4, changes the traditional recursive computing method, thus
leading to a reduction in the computing burden. Furthermore, around 40% of
computing burden comes from atmospheric density model and planet ephemerides
computation, as can be seen in both initialization and propagation processes. For
memory usage, around 200 Kbytes ROM is necessary for a one month mission,
assuming a 70x 70 Earth gravity model was used. The RAM usage varies within
several Kbytes, depending on the software structure, memory allocation strategy and
internal variable type.
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3.2.2 Simplification Schemes

Based on the discussion in the previous sections, we have the following

simplification schemes:

Nearly 60% memory usage and 40% computing time in the orbit propagation
are due to the Earth gravitational calculation. This includes the first and
second-order partial calculation and the Legender polynominal coefficient
propagation. These calculations are all recursive in nature. Different “order &
degree” schemes can be tested against accuracy requirement. From previous
experiment that 10x10 ~ 20x20 is appropriate for onboard orbit
determination, the computation burden decreases about 300% from the
70x 70 model but only with 30% accuracy degradation [Zhou & Feng,
2002a].

JPL DE405 ephemerides takes around 50% memory usage and about 20%
computing time. Unlike the gravitation calculation, this part can be highly
simplified because the accuracy of planetary ephemeris is much less

important, as the order of magnitude of the acceleration is

around 10° ~10°m/s* . Instead of using the DE405 interpolated
ephemerides, an analytical sun & moon position algorithm will be tested.

It is also found that the coordinate transformation process takes around 10%
computing time because nutation, precession, polar motion, and planetary
ephemerides are calculated for every integration step in real time. To
minimize the calculation burden, we have used an interpolation method. In
the initialization stage all of these ephemerides and parametres in a grid are
calculated and stored, and then we can recover these parametres using
different interpolation methods. In this way, around 10% computing burden
can be relieved with only very small memory storage increase.

Drag force takes 20% of the computing time. Although atmospheric drag is
important for all LEO satellites, the calculation of a precise atmospheric
density model is relatively heavy for an onboard platform. In addition to the
calculation complexity, another problem is to get the real time Sun flux and

geomagnetic data onboard. Instead of using an empirical density model, a
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simplified upper atmospheric density model will be tested. This will greatly
reduce the computing burden.

e The computing burden caused by the state transition matrix integration is
very high if the full orbital model is considered. But the precise knowledge of
the transition matrix is not required because the integration arc onboard is
only several hours in length. A simplified method is used.

e Adaptive step size control in the orbit integrator may reduce some computing
burden. In order to obtain a desired accuracy with minimum computational
effort, the orbit integrator adjusts the time integration step size. The accuracy
of the integration is compared to some desired accuracy and the step-size is
increased or decreased, depending on whether the accuracy of integration is
better or worse than the desired accuracy.

3.3 Simplified Solar and Lunar Coordinates

3.3.1 Introduction

For orbit determination the N-body gravitational perturbation from the Sun, Moon
and all planets should be considered. The JPL provides a series of solar system
ephemerides in the form of Chebyshev approximations. The Development
Ephemerides are publicly available and have emerged as a standard source for high
precision planetary and lunar coordinates. Currently the DE200 and DE405
ephemerides are most widely used for general applications.

All ephemerides are based on a rigorous numerical intergration of the respective
equations of motion. In addition to the point-mass interactions among the Moon, the
planets and the Sun, the perturbations from selected asteroids are considered, as well
as relativistic post-Newtonian corrections to the equations of motion. Furthermore,
the lunisolar torques on the figure of the Earth and the Earth and Sun’s torques on
the figure of the Moon are taken into account. The observational database for the
development of DE405 comprised mainly optical transit measurements of the Sun
and the planets since 1911, radar ranging to Mercury and Venus since 1964, tracking
of deep space probes, planetary orbiters and landers since 1971, and lunar laser
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ranging since 1970. Standard DE405 reading and interpolation methods are available
from JPL. A small utility is also available to truncate the original data file to a

shorter time span to minimize the file size.

Though DE405 is a right choice for orbit determination the computing requirement
are too high for onboard processing. According to Newton’s law of gravity the
acceleration of a satellite by a point mass M is given by Equation (3.7). For a LEO

satellite, r; << (A,r;), the approximation can be made by A% = rj3 :

7. r.
2, =Gm— () (3.13)

The order of magnitude of perturbation with respect to the Earth central body
attraction can be expressed as:
_m

;
& =—L1
M

(Z) (3.14)

For the Sun and Moon, and for the LEO satellite (r, <1.5), we have:

0.6x10"m/s?, Sun
&= (3.15)

1.2x10"m/ s?, Moon

For other planets, only acceleration from Jupiter is of the order of10™°m/s*. We
only need to consider the acceleration from the Sun and the Moon for onboard orbit

determination.
3.3.2 Methodology

Since the forces exerted by the Sun and the Moon are much smaller than the central
attraction of the Earth, it is not necessary to know their coordinates to the highest
precision when calculating the perturbing acceleration acting on a satellite. For many
purposes it is even sufficient to use simple equations for the solar and lunar
coordinates that are accurate to about 0.1% ~ 1% and follow from more advanced
analytical theories for the motion of the Sun and the Moon [Van Flandern &
Pulkkinen, 1979; Montenbruck, 1989, Montenbruck & Pfleger, 2000].

Geocentric solar coordinates can easily be obtained from the assumption of an
unperturbed motion of the Earth around the Sun. Appropriate mean orbital elements,
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which approximate the Sun’s elliptic orbit with respect to the Earth and the ecliptic
for some decades around the year 2000, are given by [Montenbruck, 1989]:

a = 149,600,000km, ¢ =0.016709, i = 0°.000

Q+w=282°9400; M =357".5256+35999°.049T7, (3.16)
where

T = (JD —2451545.0)/36525.0 (3.17)
is the number of Julian centuries since 1.5 January 2000 (J2000), and JD is the Julian

Date. The position coordinates may be found from these elements using the
equations for Keplerian orbits that were derived in the previous chapter. Due to the
small eccentricity and inclination, the use of some simple series expansions is,
however, recommended to speed up the calculation without loss of accuracy. This
results in the expressions:

A, =Q+w+M+6892"sinM +72"sin2M

) (3.18)
r, =(149.619 - 2.499cos M —0.021c0s 2M )x10° km

for the Sun’s ecliptic longitude A, and distance ,, whereas the ecliptic latitude

S, vanishes within an accuracy of 1" [Montenbruck, 1989].

These values may be converted to Cartesian coordinates referring to the equator by
applying an appropriate rotation:

r, COS A, COS f3,
r, =R (~¢) r,sinA cos B, |, &=23.4392911 (3.19)

r.sin B,
Since g, =0, the expression r, may further be simplified to give:
7, COS A,

r,=|rsini cose (3.20)

r.sinA sing
To be precise, the longitude 4, the latitude 3, and the position vectorr, in Equation
(3.19) refer to the mean equinox and ecliptic of J2000 (EME2000). Precession,
which is a result of perturbing forces of the Sun, Moon and planets, gives rise to a
slow motion of both the ecliptic and the equinox. While the ecliptic changes its
orientation by less than 1" per century, the motion of the equinox is more

pronounced, however, and amounts to 5030" per century. Referred to the mean
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equinox of 1950, for example, the Sun’s longitude is smaller than the above value by

about25150. In order to refer the coordinates to the equinox of some epoch T

egx
(measured in centuries since the epoch 2000), one has to add a correction of

1°.3972T,,, to the value of 4 given above. The ecliptic latitude need not be changed

since it varies by less than one arc-minute within a full century.

Series expansions similar to those for the Sun exist for the lunar coordinates as well.
Due to the strong solar and terrestrial perturbations, a larger number of terms are,
however, needed to describe the lunar motion in terms of the mean arguments of the
lunar and solar orbit. The following relations allow the computation of lunar
longitude and latitude with a typical accuracy of several arc-minutes and about
500km in the lunar distance. The calculation of the perturbations is based on five

fundamental arguments: the mean longitude L, of the Moon, the Moon’s mean

anomaly /, the Sun’s mean anomaly /", the mean angular distance of the Moon from
the ascending node F, and the difference D between the mean longitudes of the Sun
and the Moon. The longitude of the ascending node Q is not explicitly employed. It

is obtained from the difference Q=L,-F .

L, =218".31617+481267°88088xT —-1".3972xT
[=134°.96292 + 477198° 86753x T
["=357"52543+35999°.04944x T (3.21)
F=93".27283+483202°.01873xT
D =297°.85027 + 445267° 1135xT
Using these values the Moon’s longitude with respect to the equinox and ecliptic of
the year 2000 may be expressed as:
A, = L, +22640" xsin({)+ 769" xsin(2/)
—4586" xsin(/ —2D)+2370"xsin(2D)
— 668" xsin(l')—412"xsin(2F)
—212"xsin(2/ - 2D)~-206"xsin(/ +1'~2D)
+192"xsin(/ +2D)-165"xsin(/' - 2D)
~110"xsin(/ +1')~55"xsin(2F —2D).

(3.22)

Here, the first two terms describe the motion in an ellipse of eccentricity e = 0.055,
whereas the remaining terms denote the various perturbations. The lunar latitude is

given by:
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B, =18520"sin(F + 1 — L, +412"xsin 2F + 541" xsin/’)
—526" xsin(F — 2D) + 44" xsin(l + F — 2D)
~31"xsin(~/+ F —2D)~ 25" xsin(~ 2/ + F) (3.23)
~23"xsin(l'+ F —2D)+ 21" xsin(~ [+ F)
+11"xsin(~ '+ F —2D)

where the leading term is due to the inclination of the Moon’s orbit relative to the

ecliptic, which amounts to approximately 5.1°. Finally the Moon’s distance from the
centre of the Earth is:
r, = 385,000 — 20,905 x cos(/) — 3,699 x cos(2D — /)
— 2,956 x c0s(2D)— 570 x cos(2!) + 246 x cos(2 — 2D)
—205x cos(!' — 2D)-171x cos(l + 2D)
—152xcos(/ +/'—2D)

(3.24)

where terms smaller than 150km have been neglected. The spherical ecliptic
coordinates may again be converted to equatorial Cartesian coordinates using the

transformation:

r, COSA COSf

m

r,=R (-¢) r,sini, cosp, (3.25)
r,sing,
A change of the reference system from EME2000 to the equator and equinox of

some epoch 7, is further accounted for in the same way as for the Sun’s coordinates.

3.4. Interpolation of Planetary Ephemerides

As discussed before, full model calculation of the planetary ephemerides, nutation,
precession and polar motion parametres introduce a high computing burden. An
alternative method is to interpolate these values using a pre-calculated grid. Different
parametres require a different grid density and different interpolation method. There
are in total five types of parametres used in the orbit propagation: nutation,
precession, polar motion, Sun and Moon ephemerides.

3.4.1 Nutation

The 1AU 1980 nutation series with 106 terms was used. For calculations requiring

values of the nutation angles with an accuracy of £1mas, it is necessary to add some
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correction terms due to the incomplete IAU 1980 theory. From VLBI and LLR
observations, the IAU 1980 theory of nutation is known to be in error at the level of
several milli-arcseconds and an improved nutation theory due to Herring et al (1991)
is described in McCarthy et al. (1993). Nevertheless, the IAU 1980 series is retained
as the official standard in the IERS convention and the existing deficiencies are
compensated for by observed values of the celestial pole offsets oAy and oA¢ .
Improved nutation angles are obtained by adding these corrections to the IAU 1980

values:

Ay =AY 105 + OAY

(3.26)
Ag = A€ 1950 + OAE

There are two methods to get these corrections. The planetary correction model and
long-term tidal model are used in the first method. Herring et al (1991) published
these two correction series based on analysis of the long-term VLBI observations.
The second method is quite simple in that these two correction values are published
in the Bulletin B of the IERS, and a simple triple interpolator is recommended by

IERS. The second method is our choice for its simplicity.

Nutation calculations require three angle variables: Ay , Ae and &. We need to

inspect the daily variation of these values. Figure 3.4 illustrates a three day result.

The result suggests a linear interpolator is adequate. The standard deviations of a
linear interpolator for Ay , Ae and true obliquity & are 107, 10~ and 10" mas,

respectively, which is good enough for our onboard orbit determination application.
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Figure 3.4 Nutation angle variations over three days (45" of 2002 ~ 47" 2002).
3.4.2 Precession

Compared to the nutation calculation, computation of precession is quite simple. The
IAU 1976 theory of precession expression is used. The three precession angles
£,%and z are slowly-varying variables. Figure 3.5 shows a three-day variation of
these values. The result also suggests a linear interpolator. The standard deviation of

a linear interpolator for, &, $and z are around the 0.01 mas level.
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Figure 3.5 Precession angle variations over three days (45" of 2002 ~ 47" 2002).

3.4.3 Earth Rotation and Polar motion

The 1AU precession and nutation theories yield the instantaneous orientation of the
Earth’s rotation axis, or, more precisely, the orientation of the Celestial Ephemeris
Pole (CEP) with respect to the International Celestial Reference System. The
rotation about the CEP axis itself is described by the Greenwich Mean Sidereal Time
(GMST) that measures the angle between the mean vernal equinox and the
Greenwich Meridian. Given the UT1-UTC and UT1-TAI time difference as
monitored and published by the IERS, the Greenwich Sidereal Time at any instant
can be computed. To obtain milli-arcsecond accuracy in the equation of the
equinoxes, two additional terms +0".002649sinQ —0".000013cosQ2 with Q
denoting the longitude of the Moon’s ascending node should be added to the right

and side of the equation of the equinoxes. Two polar motion parametres x, and
y, are used to define the Celestial Ephemeris Pole with respect to the IERS

Reference Pole as a function of time. Variation of these parametres over 3 days is
illustrated in Figure 3.6.
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Figure 3.6 Polar motion parametre variations over three days (45" of 2002 ~ 47"
2002).

The interpolation of the polar motion parametres and UT1-UTC are more
complicated than for nutation and precession. A revised 3™ order Legendre
interpolation method is recommended by the IERS convention [IERS convention,
1996].

In our research context, the IERS B bulletin should be updated every month, which
means it needs to be uploaded to the satellite each month. If the data is not updated
on time, an extrapolater could be used, that is, the one month’s prediction value must
be obtained from the previous one month’s data. For UT1-UTC, UT1-TAl, Ay

and oA¢ , it is sufficient to use quadratic or even linear interpolation. For x, and y

more care is needed. Even though polar motion cannot be readily predicted,
extrapolation over a certain interval is nevertheless possible from previous data. For
this purpose the motion of the pole may be modelled as a superposition of a linear
motion (polar wander), and an oscillation with a period of 365.25 days (annual term),

and an oscillation with a period of 435 days (Chandler term). Appropriate
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coefficients that provide an extrapolation of tabulated polar motion data with an
accuracy of about 0".01 over one month are published twice per week in IERS
Bulletin A issued jointly by the IERS and US National Earth Orientation Service
(NEOS). Similar predictions are also provided by the US National Imagery and
Mapping Agency (NIMA) as part of the GPS precise ephemeris generation process.
[NIMA, 1999].

A more flexible model has been proposed by Chao [1985]. The two components of
polar motion are represented by time dependent functions:
x,=a,+bt+c,cos(2m/P, +¢,)+c.cos2m/P, +¢.)

3.27
y,=a,+bt+c,cosmlP, +¢,)+c,cos2mlP,+¢,) (3.27)

with a total of 16 free parametres a,......,4,, that are obtained from a least squares

fit to six years of past polar motion data. By allowing for different annual and

Chandlerian periods P, and P., as well as different phases ¢, and ¢, in the x- and

y- component of polar motion, some additional degrees of freedom are introduced in
this model which improves the prediction in times of notable period changes.

3.4.4 Solar & Lunar Coordinates

We use the simplified analytical method to calculate the Sun and Moon position in
the inertial frame, as discussed in a previous section. Since the forces exerted by the
Sun and Moon are much smaller than the central attraction of the Earth, it is not
necessary to know their coordinates to the highest precision. Not only can we use the
simplified method, but we also can use a linear or quadratic interpolator to get the
coordinates from a pre-calculated Sun & Moon coordinate grid. We will discuss the
impact of this in section 3.7.2.

3.4.5 Summary
Table 3.2 summarizes the interpolation method. The data grid is calculated at the
initialization stage and the grid step varies depending on different data. To retain the

interpolation accuracy, the grid step can be adjusted. For example, only 4 data points
are needed in a two hour filtering process if a half hour grid step is used, this greatly

57



reduces the computational burden during the propagation stage, with only several &

storage increase and small computing burden increase in the initialization stage.

Table 3.2 Celestial parametre interpolation schemes.

Variables Type Grid step Interpolation method
Nutation: Ay Ag, € Calculated | 30 minutes Linear interpolator
Precession: £, 9,z Calculated | 30 minutes Linear interpolator

S;xa V2 1 rd
i/}l n . & - Y Calculated | 30 minutes goILr?Q?r?irr:i:e

oon: Mx, y,z y

UT1-UTC, UT1- | IERS 3" Lengendre
UTL: TAI Bulletin 5 days Polynominal
Polar IERS 3" Lengendre

X, . .
motion; e p Bulletin 5 days Polynominal

3.5 Symmetric-sphere Atmospheric Density Model

3.5.1 Introduction

From section 3.3.1 we can see that the MSIS86 atmospheric density model uses
around 20% CPU time both in the initialization and in the partial computing modules.
The modelling of air density at satellite altitude is quite a demanding task. The shape
of the temperature profile in the thermosphere and algorithms for computing the
exospheric temperature form the core of the current density model. Furthermore, the
temperature profile is a function of solar activity, diurnal and annual effects and
geomagnetic activity. Other important effects influencing density are seasonal
latitudinal variation and semi-annual variation. Currently there are several upper
atmospheric model in use, such as CIRA-72, CIRA-86; Jacchia-71, Jacchia-77;
MSIS-86, MSIS-90 and DTM90. However, they are all very complicated numerical
methods and depend heavily on the daily or monthly Sun flux and geomagnetic data
which is not suitable for onboard processing. Another reason to use the simplified
analytical density model is that although all the above models have not been
modelled very well, they all have about a 5%-~10% inherent uncertainty and
20%~30% total uncertainty.
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3.5.2 Methodology

If only the balanced atmosphere is considered, according to hydrostatics the density

distribution is approximately a form of exponentiation:

p = pyexpl-(r—r)l H] (3.28)
Here it is spheric atmosphere. p, is the atmospheric density of the reference
spherical surface, where » =r,, and H refers to the standard height of density. The

expression is consistent with the law that density is decreasing with height increase.
Meanwhile, according to the above mentioned atmosphere models, the change of
density slows down along with height, therefore the indicated height of density
increases slowly with height. A reasonable way of approximating this is to assume
the linear relationship of H to 4 (200 ~ 600km) [King-Hele, 1964]. It can be

expressed as:
H:H(r):HO+§(r—ro) (3.29)

generally, 12 =0.1, u<0.2, the corresponding formula of density in Equation (3.28)

is converted to:
P =Py exp[— (r -7, )/H(r)] =

p0[1+ﬁ(r1;_r°] }exp[— (r—r,) H,] (3.30)

2

From the result of King-Hele, (1964), here referred to as Model CIRA-61, where h =
200km:

0y =3.6x10 kg I m®, H, = 37.4km, 1 = 0.1 (3.31)

Due to the Earth being an oblate spheriod, under the assumption of balanced gravity,
the surface of atmosphere with equal density can be also viewed as an approximately

oblate surface [King-Hele, 1964, 1976], then Equation (3.30) can be modified:
p=pyexpl-(r-o)l H(r)]=

p°[1+ﬁ(rHGJ2}xp[—(r—a)/HO] (3.32)

2 0

The above formula describes the oblate spherical atmosphere, where o refers to the

distance between the Earth centre and the ellipsoid surface that crosses the reference

59



point ( p=p,, H=H, ). Equation (3.32) basically reflects the atmosphere

distribution in the space impacted by the gravity of the Earth. That distribution is
relatively consistent with the distribution of mean density produced by those existing
models for atmosphere. In the early researches as to the impact of atmosphere drag
on satellite orbits, King-Hele (1964) and others adopted this expression of

approximate density, where the corresponding reference point is at the perigee P, of

the satellite orbit (the impact of atmosphere drag around perigee is the most

significant), the density p, and the indicated height of density H,are p,, and H ,,,

respectively.

The impact of solar radiation on atmosphere density shows different periodic
changes, and the diurnal effect due to the Earth’s rotation is particularly distinct. The
density in the daytime is much more than the one at night at the same height and
latitude. Generally speaking, the density at local time 14h reaches the maximum and
around this time the density changes rapidly, whereas the density is down to a
minimum value at about 2 ~ 5 hours, when the density changes slowly. However,
just as King-Hele (1964) pointed out, it is reasonable as the a order approximation to
assume that the maximum and minimum of both the Earth’s centre and diurnal effect
are on the same line, about which the surfaces with equal density are symmetrical.
Considering the changes of density with both height and time with this assumption in

mind, we have:

p = po(L+F* cosp)exp[- (r—c]/ H(r) (3.33)
where ¢ is the angle between the satellite vector r and the vector r, where the
diurnal maximum density lies. With the assumption of the above described
symmetrical diurnal effect, the relationship between the r, and the Sun can be
expressed as:

a, =0+, 6,=0 (3.34)

m

where «, ¢ are the Sun’s equatorial latitude and longitude, respectively. A is 30°. If
F refers to the diurnal variation factor, its relation to the ratio /~ (daytime density
night-time density ratio) can be described as:

N
Pmin  1=F S+l

(3.35)
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According to this definition, p, is the diurnal mean density on the reference

ellipsoid surface wherer =o, i.e.,, 9 =90". p,can be calculated from the adopted

atmosphere model and relevant parametres.

3.6 Integral Equation Method

3.6.1. Integral Equation

Integral Equation of Satellite Orbit

The integral equation method for satellite orbit integration was first proposed by
Feng (2000). It begins with the differential equation of the two-body motion of a

satellite, which comes from Newton's second law of motion and the universal

gravitational law:

f=—i¥r (3.36)
where

r is the satellite acceleration vector

r is the satellite position vector

GM s the product of the gravitational constant G and Earth mass M
Including also the velocity vector i, Equation (3.36) can be rewritten as:

% =B x (3.37)
where
r
x:H:[x vz % g T
r
0 0 0 100
0 0 0 010
g 0 0 001
M
B=|—x O 0 000 (3.38)
o - o 000
r
o o Moo
L 7 _

Given a set of position and velocity vectors at the initial time epoch ¢ = ¢
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. . . T
Xo:[xo Yo Zo Xo Mo Zo]

we can obtain an analytical solution of the two-body problem [Goodyear, 1965]:

x=H,x, (3.39)
where
'h 0 0 g 0 O]
0~ 00 g O
H- 0 0h 0 0 ¢
h 00 g 00 (3.40)
0 h 0O g O
00 2# 0 0 g
is the solution of the differential equation:
H, =B H, (3.41a)
H, =1, (3.41b)

I, is the 6-by-6 identity matrix. Refer to Appendix A for the computation of all the

elements of the matrix H.

For the perturbed motion of a satellite, Equation (3.37) can be written as:
x =B x+ f(t,x,) (3.42)
where f(¢,x,) is the 6-dimensional vector, a function of the spacecraft state, which

can be composed of all perturbing forces acting on the satellite, such as the non-
spherical and inhomogeneous mass distribution within the Earth (central body), other
celestial bodies (Sun, Moon etc); Earth and oceanic tides, atmospheric drag, Earth

and solar radiation pressure and geomagnetic effects, etc.

To derive the solution of Equation (3.42), we redefine the x, in Equation (3.39) as
the function of time &, :

x, =HE, (3.43)
which is regarded as the solution of Equation (3.42). To determine &, we substitute
Equation (3.41), together with its derivative:

x, =H/¢ +HS (3.44)

into Equation (3.40) and using Equation (3.41a) obtain:
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& =H/(tHE) (3.45)
The integration of Equation (3.45) gives:

g =&, + j H 'f(r,H.E )dr (3.46)
Substituting Equation (3.45) into Equation (3.43), and defining the state transition
matrix:

®, =HH (3.47)

We have the integral equation for motion of a satellite:

X, =@, x, +] ;cpw f(@,x,)dr (3.48)

The solutions of Equation (3.40) with the initial value x, and the integral Equation

(3.48) should be equivalent. Comparing Equation (3.48) to (3.42) it can be seen that
Equation (3.48) also consists of components due to the central body and perturbation
forces. In particular, the first term gives the states of the satellite at time t from the
states of the elliptic orbit at to, while the second term gives the state variations due to

the perturbations during the interval (z,,7). The matrices ®, and ®,, play roles of

state transitions in both cases. As seen in a later section, it was these state transition
matrices that make the numerical solution of the integral equation comparatively

simple.

Equation (3.48) is called the “integral equation” due to the presence of the unknown
function x, under the integral symbol. Integral equations appear in the mathematical
theory of many scientific and engineering branches, and are categorized into
different types. Theoretical and numerical methods have been established for each
type of integral equation. This integral equation belongs to the class of

Hammerstein-Volterra integral equation of the second kind.
State Equations for Orbit Estimation
To be able to estimate the states of the orbit, we need to establish the state transition

equation starting with the differential Equation (3.42). Considering some of

unknown parametres in the perturbing forces, p absorbs variations on both sides of

Equation (3.44):
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ox ox
Ak, = 2t Ax, +iAp (3.49)
6x op

where Ax =X - X,Ax=x-X,Ap=p-pi, and X is the nominal orbit solution as
computed by Equation (3.48) with the initial state x, and the parametres p. The

solution of the differential equation (3.51) is given by the following integral
equation:

_ 0%, X, L Of (7,x,, 1) 3.50
Ax, = ——“Ax, [j . (8X> G el (3.50)

~

where the partial derivation —=— can be obtained from Equation (3.48)

8x

=, j[cb afg"xf)

ty T

0X,
ox

A RS2 P (3.51)

Equation (3.51) is also an integral equation. Although the integral computation
compartively simple, the computation of Equation (3.51) still involves relatively
heavy computation because of the complexity of the partial derivatives. Ignoring the
effects of perturbing forces on the partial derivatives, Equation (3.51) can be
simplified as:

&%
= =0, (352)
X,

Thus, the difference equation (3.50) becomes:

I (z.x,, 1
o

Ax, =0, Ax, +[[ @, driAp (3.53)

Define @/, as the state transition matrix relating Ax,to Au:
‘ X
@, (1) =[] @, T @X@m) 4 (3.54)
) au
then the state equation can be written:

AX, =@ AX, + D Ap (3.55)

In summary, using the integral equation (Equation (3.48)) to represent satellite orbits
not only provides a simple and efficient numerical solution for satellite orbit
prediction, but also gives the transition matrices for the force parametres at the same
time. Compared to the numerical methods for orbit determination [Webb &
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Zvmberge, 1995], this algorithm is significantly simplified, thus saving huge amount
of computation (thanks to the simplicity of the matrix H in Equation (3.40) and the
process in Equation (3.52)). However, this simplification introduces in some
limitations to the application of the algorithm. The coefficients in H matrix remain

valid only for two-body orbits. The computation of the state transition matrix @, is

based on a two-body orbit instead of a perturbed nominal orbit. Using this matrix to
transit the state biases over a long period will introduce some uncertainty. In
general, the proposed algorithm is suitable for short-arc processing, as suggested for
this study. But for long-arc batch filtering this simplification may cause some

problems.
3.6.2 Step Control Algorithm

In order to obtain a desired accuracy with minimum computational effort, the orbit
integrator adjusts the time integration step size A¢. The idea is quite simple. First, the
accuracy of the integration is compared to some desired accuracy. Second, the step
size is increased or decreased depending on whether the accuracy of integration is

better or worse than the desired accuracy.

The accuracy of integration is determined by the so-called step-doubling procedure.
In this procedure the position and velocity vectors of the satellite at the current time
step n:

r'ovl =X,z (3.56)

i i

are advanced by two time steps using the current step size At":

A ol A mea A ol A i
P T S A e (3.57)

1 1 1

In addition, " and v;' are advanced using twice the current step size:

28" 1" 28" 4l
rin_> t r}n+ ,vin_) r vin+ (358)

The accuracy is defined to be the difference between the two new aforementioned
states, namely

A" =x"? —x™ (3.59)

where the state vector x refer to both position and velocity vectors.

65



Next A’ is compared to a desired accuracy A,,. To compute the new step size A",

the following algorithm is used:

02
Ao

SAL A, <A

n

0.25 (3.60)
A, > A,

n

Atn+l —
SAt"

n

0

Where S is a safety factor (the recommended value of S'is 0.9).

3.7 Experiment Studies

3.7.1 Description

The purposes of the experimental study are threefold:
1. To test the orbit dynamical model simplification algorithms discussed in
previous sections.
2. To explore the efficiency and capacity of simplified methods to reduce the
onboard computational burden.
3. To assess the accuracy of orbit integration using simplified methods

compared with full models.

The experimental studies are based on the data from three LEO missions: T/P, SAC-
C and CHAMP. Their altitudes are 1340km, 700km and 450km, respectively, and
represent three typical LEO orbits. The reference ephemerides are post-processed
results from JPL’s GIPSY-OASIS Il software. The position errors are at the
centimetre level for T/P, and decimeter level for SAC-C and CHAMP. All the
proposed methods are tested to validate the algorithm efficiency. Finally, we
compare the orbit integration accuracy as well as computing time and memory usage

of simplified method against the traditional full model strategies.

3.7.2 Truncated Earth Gravitational Model

The first step is to truncate the Earth gravity model. The order & degree of JGM-3 is
up to 70x70. Higher order brings higher accuracy, but also brings much greater
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computational burden. A proper balance between accuracy and computing burden is
the objective of this investigation.

3.7.2.1 Order of Magnitude of Acceleration

The order of magnitude of acceleration is calculated from 2x2 (J,) to 70x70

(highest accuracy). All the values are compared with the 70 x 70 model. Figure 3.7
illustrates the result. It is clearly shown that CHAMP requires a higher order of
gravity model to achieve the same accuracy comparing with SAC-C and T/P.
Satellites with lower altitude are more affected by Earth gravity field. To achieve a

10°® m/s? acceleration accuracy, T/P requires around 15x15 order & degree of

gravity model, while SAC-C requires30x 30, and CHAMP requires 60 x 60.
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Figure 3.7 Comparison of gravity acceleration accuracy using different degree &

order at different altitudes.
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3.7.2.2 Computing Time versus Accuracy

Both computing time and orbit integration accuracy for different truncation schemes
were studied. From the result of the previous experiment, we chose four typical
JGM3 truncation schemes: 10x10, 20x 20, 30x30 and 70x 70.

One day’s orbit integration was made for T/P, SAC-C and CHAMP. Except for the
different truncated gravity models, the other dynamical models used in the integrator
were kept the same:
- Third body gravity: Sun & Moon and all planets.
- Pole Motion: IERS Bulletin B.
- Celestial Frame: IAU 1980 nutation, IAU 1976 precession.
- Tidal potential model: 2" degree Legendre polynominal for the Sun &
Moon.
- Solar pressure: direct effect with shadow consideration, the coefficients
for T/P, SAC-C and CHAMP are: 0.003, 0.023 and 0.0, respectively.
- Atmospheric Drag: using MSIS86 density model, the ballistic coefficients
are 0.001, 0.02 and 0.015 for the three missions.

It is very difficulty to obtain the precise values without an estimation process, thus
the solar pressure and drag force parametres were roughly estimated by satellite
physical parametres. Biased surface parametres cause big orbit integration error for
LEO satellites, but this is not important in that we only want to know the relative
accuracy and computing speed. Table 3.3 gives detailed results for the SAC-C test.
We can see that the mathematical operations increase dramatically as the gravity

model size increases.

Table 3.3 Computational burden and accuracy of SAC-C 24h orbit integration using
different JGM-3 gravity model truncations.

Number of | Number of Orbit Maximum Error
Size Coefficients | Math Flops Integration time | Compared to
(seconds) 70x 70 (m)
10x10 126 1553 76.36 218.19
20x 20 456 5103 91.14 80.41
30x30 986 10653 92.08 13.76
70x70 5160 52853 146.27 0.0
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Figure 3.8 illustrates the orbit integration accuracy variation against computing time,
the orbit integration errors being compared wit the use of a 70x 70 model. We can
see that the accuracy is unacceptable for all missions if only 10x10 model is used.
20x 20 to 30x 30 is a better choice, especially for T/P. The computing burden of
the 30x 30 truncated model is 60% less than that of the 70 x 70 model, but results in

several metres accuracy loss.
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Figure 3.8 Orbit integration accuracy against computional time using various degree
& order of JGM-3 model.

3.7.2.3 Short-arc Orbit Integration Performance

A short-arc refers to from tens of minutes to several orbit revolutions. For the
proposed short-arc orbit determination method we only need to address the
performance of the orbit integrator over a several hours arc. We chose 15 minutes, 1
hour and 2 hours for the short-arc orbit integration testing. The impact of the
truncated gravity model was also considered. The results are shown in Figure 3.9.

We can see that for the 15 minute arc, the orbit integration accuracy can be
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controlled within several metres easily for all satellites, even with the 10x10 model.
For 1 hour and 2 hour arcs, the same accuracy still can be achieved if higher than a
20 x 20 gravity model is used; but this is not the case for CHAMP. It is not possible
to get below 10 metres orbit integration accuracy for CHAMP even using 70x 70
model, this suggests more accurate atmosphere drag model should be considered,
and that the drag coefficients also should be adjusted during the orbit estimation

process.
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Figure 3.9 Short-arc orbit integration accuracy using various degree & order of
JGM-3 model.

3.7.2.4 Simplified Solar & Lunar Ephemerides
This experiment is to validate the analytical, simplified solar & lunar coordinate
calculation method described in section 3.3. Two aspects have been addressed: the

positional error compared with the DE405 ephemerides; and the acceleration error
introduced by this simplification.
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Figure 3.10 illustrates the 3D coordinate error in the inertial system (ICRF)
compared with the JPL DE405 data. It shows 0.001% and 0.01% error for the Sun
and the Moon, respectively, which is good enough for the short-arc orbit integration.

The lower part of Figure 3.10 shows the absolute 3D coordinate error.

Furthermore, Figure 3.11 shows the impact on the acceleration. The upper half
shows the order of magnitude of the acceleration introduced by solar and lunar
gravity; the lower part gives the difference between simplified method and using
DE405 ephemerides. Three missions were included in this experiment. We can see
that, unlike the Earth gravity effect, higher orbit are more likely affected by the solar

and moon gravity. And the acceleration errors introduced by the simplification are

around 10™m/s*and 10"°m/s* for the Sun and Moon, respectively. From our

discussion in section 3.2.1, an acceleration error smaller than 10™°m/s? is

acceptable for our short-arc orbit determination method, hence this result is

satisfactory.
%10
- 828 T - T T -
£ :30 Sun Posﬁ_lon Error Pecentage compared with DE4¢5
g : | : :
‘g [515)|Se5aaac0aaaaaaaaa0s e EELEE R — e — LT Taspgeeagegeaaggaaas FEETEERTTERRTERPEIT ERRETRIRPRR -
[= 9 N B M . N
5 :
o 8.15 1 | 1 | | 1
0 05 1 156 2 25 a 35
= 0.018 2
< ! 13D Moon Position Error Pecentage compared with DE405
g : : 5 5 f ;
S 0017 b e T EEEEEE S RRAB AR RAABA AR AL e fiBRnnnoaaBRRGaaacaRaD $b0a6a60E000000000 o
3 : : : 5 g B
e : : : :
@ 05 1 156 2 25 3 35
1230 . . o . - . =
z : ;3D Sun Posﬁ_lon Error compared with DE405 :
£ : : i 5 ; i
E 1225 L ..................... .............. .................. ..................... .................... .................. —
= ' f ' : ?
0 05 1 156 2 25 3 35
66 ot
_ ! gSD Moon Poéition Error cohpared with IiJE405 '
i BS e T ........................ |
= :
= [5¥]| Seassaaaaanrannaanaghoaa aaac0esaaaonaRnRA e o AT EEARAEEA R AR 006 606 A 686 06 ARAEG 066 AR EEEGE a0 08 ARG 06 A ARAGGHA AR REEERRAGGA ARARG —]
= H . B : o B
63 i i i i i i
0 05 1 156 2 25 3 35
Numbers T

Figure 3.10 Simplified solar & lunar ephemerides error compared against JPL
DEA405.
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Figure 3.11 Solar & lunar perturbation order of magnitude using simplified model

for different height missions.
3.7.3 Interpolation of Celestial Ephemerides

The objective of this experiment is to validate the methods developed in section 3.4.
Instead of precisely calculating the nutation, precession, polar motion parametres, as
well as the solar and lunar coordinates at every epoch, an interpolator was used. The
best way to determine the accuracy of the interpolation is to check the coordinate
transformation result between the terrestrial-fixed reference frame and celestial
inertial reference frame. Coordinate transformation from ICRF to ITRF was tested
on 14"~16", February 2002. Both the reference ICRF and ITRF data are from JPL’s
precise SAC-C ephemerides. The interpolation method uses interpolated
transformation parametres, and the transformed coordinates are compared against the
standard non-interpolation ones. Figure 3.12 illustrates the coordinate error
introduced by interpolated parametres and the RMS for the x, y and z components. It
is noticed that only several centimetres error was introduced, which meets our

requirement. It is also found that error in the z-axis is much bigger than for the other
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components and this suggests large error from the polar motion parametres rather

than from nutation and precession.

Furthermore, the interpolation accuracy of the simplified solar and lunar
ephemerides was investigated. The 3D acceleration value was calculated using the
interpolated method and then compared to using the DE405 precise ephemerides.
Figure 3.13 shows the result. It is observed that the errors are at the same level as the

result of Figure 3.11, suggesting that the interpolation error can be ignored.
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Figure 3.12 Coordinate transformation errors between ITRF and ICRF using

interpolated parametres compared to the standard method.
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Figure 3.13 Solar & lunar perturbation error due to the interpolation.

3.7.4 Simplified Atmospheric Density Model

The simplified atmospheric model discussed in section 3.5 was tested. First, the
performance of several well-known empirical atmospheric density models, including
the MSIS 86, Jacchia 77 and DTM90, were compared. The CPU usage, mean
density difference and maximum density difference were calculated based on values
derived from the MSIS 86 model. Table 3.4 gives the result. We found big
discrepancies even among these popular models due to the complexity of Earth’s
upper atmosphere. The proposed method is very simple compared with the
traditional empirical methods. It is about 100 times faster in speed. On the other
hand, it has a 30% mean density bias and 153% maximum density bias from MSIS86
model, and it is not clear to what extent this bias will affect the orbit integration
accuracy. But we also can see that even a modern DTM90 model has a 19% mean
density bias and 101% maximum density bias. Thus we can conclude that the
proposed simplified atmosphere model has a performance roughly in accordance
with current empirical models. To account for the uncertainty in atmosphere density
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models we can tune the atmospheric drag coefficient during the orbit estimation
process in order to compensate for the errors in the atmospheric density. We will
discuss this later.

Table 3.4 Comparison of density models in terms of CPU time performance, mean,

and maximum difference in density relative to MSIS86.

Model CPU Pmean 70 AP oy Yo
MSIS 86 100.00 - -

Jacchia 77 3425.00 8.0 89
DTM90 9.30 19.0 101
Simplified Model 1.50 30.0 153

Figure 3.14 compares the atmospheric density calculated at T/P, SAC-C and
CHAMP altitude using MSIS86 and the proposed method. Best agreement was
found at the lowest altitude. This is due to the fact that the upper atmosphere is
harder to model and thus needs more empirical data. We also found that density from
MSIS86 indicates an hourly fluctuation, while the simplified method doesn’t, except
at CHMAP altitude. This suggests a deficiency in the upper atmosphere modelling.
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Figure 3.14 Atmospheric density difference between MSIS86 model and simplified

model for different height missions.
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3.7.5 Integral Equation Method and Step Size Control

From the description of the Integral Equation (IE) method in section 3.6.1, we can
see that the accuracy of the IE method is of the same order as the RK4. What we like
to test is the performance of the step size control with the IE method. The orbit
integration setting is the same as in section 3.7.1 for three missions. The initial
integration steps are 10s for all tests. Furthermore, the step changes are related to
different truncation tolerances, we used 10° and 10 m. Table 3.5 lists the
minimum, maximum and mean step sizes for three satellites with different error
tolerance. It provides us with a guide as to how to determine the proper step size for

the orbit integration.

Table 3.5 Step size change with different truncation tolerance.

t=10"3m t=10"m

Min (s) Max (s) Mean (s) | Min (s) | Max (s) Mean (s)
TOPEX 2.2 35.5 13.2 0.6 25.6 5.4
SACC 1.6 32.2 12.2 0.9 23.1 4.9
CHAMP | 0.8 25.1 115 0.2 18.5 4.6

3.7.6 Orbit Integration with Full Simplified Consideration

Different algorithms have been validated in previous experiments. We are more
concerned about the overall performance of the simplified method. In this
experiment, orbit integration performance is compared between the full model and
the simplified model. Table 3.6 lists the details of these two models. The results are

derived from one day’s orbit integration.

Figure 3.15 give the 3D position error from these two methods. The maximum 3D
positional errors are 0.5m, 20m and 130m for T/P, SAC-C and CHAMP,
respectively. This suggests a good orbit integration performance for T/P for a 24
hours arc length. Although not as good as T/P, the simplified method gives a
satisfactory result for SAC-C with up to 4 hours’ arc length; and up to 1 hour’s arc
for CHAMP.
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Table 3.6 Comparison of simplified and full orbit model.

Full Model Simplified Model
Gravity JGM3 70x 70 JGM3 30x 30
Planetary JPL DEA405 Analytical method
ephemerides
Atmospheric MSIS86 Simplified method
density model
Upper wind HW\V/93 )
model
Solar pressure Direct effect Direct effect
Nutation, IAU 1980 nutation / IAU 1976 | IAU 1980 nutation / IAU 1976
precession precession, real time calculation precession, interpolation method
Polar motion IERS B bulletin IERS B bulletin
Integrator RK4(5) with 5 seconds step Integration method with step control
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Figure 3.15 Comparison of 3D orbit integration error between simplified model and

full model.

Figure 3.16 gives the radial, along-track and cross-track positional errors. This also

suggests a similar conclusion to Figure 3.15.

The computational burden is

characterized by the computing speed. The experiment was carried out on a desktop

PC, the configuration is PIlIl 1GHz, 256 Mbytes memory. The computing speed is

measured by recording time tags at the beginning and end of the orbit integration

program. Though we cannot get precise figures in this way, we are only interested in
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the relative performance. Figure 3.17 gives the computing speed comparison
between the simplified method and full model method. The simplified method is 3 ~
4 times faster than the full model method. This result is quite encouraging.
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Figure 3.16 Comparison of radial, along-track and cross-track positional error

between simplified model and full model.
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Figure 3.17 Computation speed comparison.
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3.8 Conclusion

The research efforts on orbit dynamical model simplification have led to the
establishment of a technical capability for onboard orbit determination in near-real
time. The detailed computational burden of orbit integration was analyzed, and
several model simplification schemes were identified, which can reduce the onboard
computation resource requirement while retaining enough orbit integration accuracy.
These simplification strategies can be summarized as follows:
e Reduce the degree & order of the Earth gravity model;
e Use an analytical method to obtain solar and lunar coordinates instead of the
memory-consuming JPL DE405 interpolation method.
e Interpolate the nutation, precession and polar motion parametres from a given
grid instead of calculating them precisely.
e Replace the traditional computation requiring an empirical atmospheric
density model with a simplified analytical model.
e Use the Integral Equation method to propagate the orbit, as well as a step
control algorithm.
e Simplify the orbital state transit matrix algorithm by only considering the

J, term.

All the algorithms have been separately validated using real data from three LEO
missions: T/P, SAC-C and CHAMP. Finally, the performance of orbit integration
was evaluated and compared between the results from the full orbital models and the
simplified models. Extensive testing has shown:

e For orbit integration using the full model, Earth gravity accounts for around
40% of the computing burden; atmospheric density model and planetary
coordinates calculation account for around 20% of the computing burden
each; and the nutation, precession, polar motion and time transformation
tasks take another 10%.

e To obtain metres level accuracy, the 70x 70 Earth gravity model can be
simplified to 20 ~ 30 order & degree for satellites at altitudes of T/P and
SAC-C. For a shorter arc, such as within 4 hours, this simplification is

suitable for most LEO satellites.
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e The computational burden of computing nutation, precession, polar motion,
solar & lunar coordinates and the time transformation can be reduced by
using an interpolation method and analytical solar & lunar ephemerides.

e The tested atmospheric density model reduced the computational
dramatically, but the accuracy compared to MSIS86 was also degraded by
around 30%. Considering the fact that even a precise DTM90 model has a
19% error compared to MSIS86, the proposed method is acceptable with
nearly 60 times less computing time.

e The Integral Equation method with simplified orbital state transition matrix
algorithm (algorithm in Appendix A) also reduces the computational effort,
especially in the orbit estimation process.

e Compared to the full model method, the proposed simplified orbital model
strategies using all algorithms can achieve metres level accuracy for a 4 hour
short-arc for SAC-C and T/P. At the altitude of CHAMP, the same level
accuracy can also be achieved with a 60 minute arc. The computational
burden of the simplified method is 3 ~ 4 times less than that of the full model
method.

The experimental study of the simplified orbit model has identified a means of

developing an onboard orbit determination using limited computing resources

onboard.
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Chapter 4

Gravity Acceleration Approximation Method

Improving the speed of gravitational acceleration computations plays a critical role
in reducing the overall computational burden of onboard real time or near-real time
orbit determination processing. The most straightforward methods to improve the
speed of computing gravitational accelerations include truncating the gravity model,
pre-selecting a significant subset of coefficients, and tuning a truncated gravity field
through estimation. Of these strategies the truncation method is most frequently used.
From the test results presented in Chapter 3 truncation can reduce the computational
burden by around 40% while retaining meter level orbit integration accuracy in most
circumstances. If sub-metre accuracy for longer arcs is required, a higher order of
Earth gravity model is still needed, especially for low altitude satellites. In this case,

the truncating method is no longer suitable.

Based on research by Hujsak [1996], an alternative method was proposed to directly
interpolate the gravitational acceleration from a grid of pre-computed values. The
recursive gravitational computation is replaced by a much simpler interpolation
method but requires several Mbytes more memory. The results show that the
computational burden of the method is equivalent to that of a 5x5 gravity model.
The following sections describe these methods in detail, and present extensive

results to explore its possible application for onboard orbit determination.
4.1 JGM Earth Gravity Model Overview

4.1.1 Geopotential Spherical Harmonic Expression

Because the irregular distribution of the Earth mass is unknown, the geopotential
coefficients have to be determined through the analysis of measurements. Three
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principle types of observations are currently used to improve the Earth gravity
models: satellite tracking, surface gravimetry and altimeter data. From around the
1960s, some gravity models have been developed using satellite data.

One of the most precise EGM96 currently available for orbit determination is the
Joint Gravity Model (JGM). JGM was developed for the oceanographic mission T/P,
which had challenging requirements for the radial orbit accuracy of 13cm. This
mission led to cooperation between NASA’s GSFC, the University of Texas Centre
for Space Research (CSR) and the Centre National d’Etudes Spatiales (CNES) in the
area of Earth gravity filed determination. As a result, the final pre-launch T/P gravity
model JGM-1 of order and degree 70 was released in 1994 [Nerem, et al., 1994]. It
used the GEM-3 gravity model solution, but processing all of the data with improved
models and constants. Its successor JGM-2 was a first post-launch T/P model, which
included a six-month set of T/P SLR and DORIS data. A further improvement in
accuracy was obtained with JGM-3 [Tapley, et al., 1996], which comprised new T/P
SLR, DORIS, as well as for the first time GPS tracking data of the T/P satellite. In
addition, new SLR data from LAGEOS1, LAGEOS2 and Stella, as well as DORIS
tracking of the SPOT?2 satellite, were included.

Like other gravity models, the JGM3 geopotential model is usually represented by a
spherical harmonic expression - the harmonic expression is given in Equation (3.6).
In general, excluding the central two-body force, the non-spherical geopotential can

be expressed in the Earth-fixed frame as:

e S By Ftsing) +

U, (r,¢, 1) =

oM, ii (%)'ﬁm (sing)[C,, cosmA+ S, sinmA]

r‘=2m
(4.1)
The notation is the same as for Equation (3.6). The first term of the right-hand side
of the equation is the sum of the zonal termsC,,, if one considers the more general
case of mass distribution that is symmetric with respect to the axis of rotation. But
the Earth is not an ideal rotational ellipsoid. The additional tesseral and sectorial

geopotential coefficients are described by the second set of terms
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Furthermore, according to Koskela [1967], acceleration components in the Up (U),
East (E), and North (N) coordinate system in the Earth-fixed frame are:

a, :_GIZ/I {Hi(n +1)(%j Zn_;p;“(sin #)[C,, COSMA+S, sin mxl]}

r

r

a, = ri’;ﬂw {i‘ (Ej mzn:_ompr'? (sing)C,,SinMA-S,, cos m/l]}

a, = G'\Z/I {i(ae) Zn;)cos gp! (sin ¢)[C,,,, cOSMA + S, sin m/l]}

(4.2)

Where prime (') indicates the derivative with respect to(sin ¢).
4.1.2 Gravity Acceleration and Partials

The accelerationr expressed in the inertial frame, which is equal to the gradient

ofU(r,¢,4), may be expressed as:

L_0U, FUs o U, o U, o }
or | or or'(x,y,z) 8¢ or'(x,y,z) 064 or'(x,y,z)
(4.3)
where the O, is a time-dependent matrix that describes the Earth’s rotation,
precession and nutation, and r'(X, y, z) is the satellite vector in the Earth-fixed frame.

The second-order partial derivatives of the potential also can be expressed as:

@=®I{ 0 ( ouU, ]}ar’(r,ﬂ,qﬁ)@t @
or or'(r,A,¢)\ or'(x,y,z) ) |or'(X,y,2)

4.2 A Study of Gravity Acceleration Variation with JGM-3 Model

After the removal of the central body force, the order of magnitude of Earth gravity

acceleration is around 10°m/s?* . From Equation (4.1), we can see that the

acceleration only depends on the coordinates (r,4,¢) in the Earth-fixed frame. This

suggests the idea to of a global gravity acceleration grid. But to get the necessary

interpolation accuracy, the grid must be dense enough. On the other hand, a dense
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grid requires much more memory space, thus an optimal grid size is important. In

this section, the gravity acceleration variation with respect to (r,4,¢) has been

investigated.

4.2.1 JGM-3 Gravity Acceleration Variation with Respect to (r, 1, ¢)

Given the latitude and longitude values (4, ¢), the acceleration was calculated at
different altitudes. Three sets of (4, ¢) values were used in this test: (0, 0), (0, 60),

(0, 80). For a circular or near-circular orbit, only a very thin orbit layer is needed.
For example, the altitude range of SAC-C is from 7070km to 7090km. Figure 4.1

illustrates the variation.
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Figure 4.1 Gravity acceleration variations (m/s?) with fixed longitude and latitude
at altitude between 7070km to 7090km.

Obviously, it is quite reasonable to represent the acceleration using a low-order
polynomial in the radian (r) direction.
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Similarly, the test was carried out at a fixed (r, ), allowing the geocentric longitude

A to change from 0 to 359 degree. Three sets of (r,¢) values were used in this test:

(7080, 0), (7080, 60), (7080, 80). Figure 4.2 shows the result. The variation in

longitude changes dramatically compared to variations in altitude.
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Figure 4.2 Gravity acceleration variations (m/s?) with fixed height and latitude at

longitude between 0 to 360 degrees.

Furthermore, given three sets of (r,A4): (7070, 0), (7080, 0) and (7090, 0), the

variation with latitude is shown in Figure 4.3. This is similar behaviour to Figure 4.2.

It is difficult to model this type of variation because the acceleration changes

dramatically with different latitude.
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Figure 4.3 Gravity acceleration variations (m/s*) with fixed height and longitude at

latitude between -85 to 85 degrees.
4.2.2 Polynomial Approximation of Radial Gravity Acceleration Components

Based on the previous discussion, it is a quite straightforward to use a polynominal
function to fit the gravity acceleration values in the height direction. In order to
precisely fit the height acceleration variations, the accelerations at a certain number
of sample points must be first calculated. The m-order n-point polynomial fitting can
be expressed as:

n-1
Poa(X) =8, +a,(x—X) +a,(Xx—X)* +--+a, ;(x-X)"!, Xx=>x/n
0

(4.5)
For a given (4,p) three gravitational acceleration components were calculated

within the height range. Least squares methods are used to estimate the coefficient
with the samples at n points The order from 3 to 10 was tested at three different

points: (0°,0°), (0°,45°) and (0°,80°) . To avoid loss of precision, the data points
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were sampled for every 10 ~ 50 metres between the orbital radius 7070km to
7090km, resulting in 2,000 points. Table 4.1 illustrates the polynomial fitting result
for different schemes. Figure 4.4 shows the RMS values of the radial gravity
acceleration polynomial fitting as a function of different orders, while Figure 4.5

illustrates the maximum errors of the same fittings.

Table 4.1 Height direction gravity acceleration Legendre polynomial fitting results

at (0°,0), (0°,45") and(0°,80°), respectively.

Order X Y Z

Square Abs Max Square Abs Max Square Abs Max
3 3.26e-18 3.11e-8 2.35e-10 3.3%-21 1.00e-9 7.64e-12 4.30e-20 3.57e-9 2.72e-11
4 6.34e-24 4.33e-11 3.6%e-13 2.26e-25 8.18e-12 6.99%-14 2.28e-24 2.60e-11 2.22e-13
5 4.06e-29 1.11e-13 9.70e-16 8.18e-30 4.92e-14 | 4.59¢-16 6.67e-29 1.41e-13 1.31e-15
6 1.21e-30 1.88e-14 1.02e-16 2.28e-34 2.57e-16 2.62e-18 1.21e-33 5.96e-16 6.02e-18
7 1.39e-30 1.91e-14 1.06e-16 5.48e-36 3.75e-17 2.20e-19 1.08e-35 5.36e-17 3.15e-19
8 2.77e-30 2.72e-14 2.36e-16 1.10e-35 5.45e-17 4.85e-19 2.13e-35 7.38e-17 6.81e-19
9 3.10e-30 2.88e-14 3.42e-16 1.22e-35 5.78e-17 6.95e-19 2.37e-35 7.63e-17 9.72e-19
10 3.85e-30 3.22e-14 2.20e-16 1.51e-35 6.37e-17 4.37e-19 2.95e-35 8.74e-17 6.37e-19
Order X Y Z

Square Abs Max Square Abs Max Square Abs Max
3 4.33e-18 3.58e-8 2.71e-10 | 3.24e-20 3.10e-9 2.36e-11 | 4.58e-19 1.17e-8 8.83e-11
4 1.07e-23 5.63e-11 4.7%-13 1.46e-24 2.08e-11 1.78e-13 8.62e-25 1.60e-11 1.36e-13
5 3.92e-29 1.20e-13 9.30e-16 4.78e-29 1.19e-13 1.11e-15 1.65e-30 2.25e-14 1.83e-16
6 1.34e-30 1.9%-14 1.14e-16 1.17e-33 5.84e-16 5.91e-18 1.67e-31 6.97e-15 4.21e-17
7 1.51e-30 2.07e-14 1.16e-16 1.19e-35 5.70e-17 3.12e-19 1.90e-31 7.15e-15 4.81e-17
8 3.04e-30 2.81e-14 2.60e-16 2.45e-35 8.08e-17 7.3%-19 3.6%-31 9.99%-15 8.5%-17
9 3.40e-30 2.95e-14 3.75e-16 2.73e-35 8.50e-17 1.05e-18 | 4.14e-31 1.06e-14 1.25e-16
10 4.25e-30 3.35e-14 2.41e-16 3.40e-35 9.55e-17 gfgle- 5.10e-31 1.18e-14 8.67e-17
Order X Y Z

Square Abs Max Square Abs Max Square Abs Max
3 1.54¢-18 2.13e-8 1.62e-10 2.61e-20 2.78e-9 2.12e-11 1.02e-17 5.51e-8 4.17e-10
4 3.02e-24 2.99%-11 2.54e-13 2.03e-24 2.45e-11 2.10e-13 1.80e-23 7.31e-11 6.21e-13
5 1.40e-29 6.55e-14 5.71e-16 8.9%-29 1.63e-13 1.52e-15 5.07e-29 1.25e-13 9.99%-16
6 6.05e-31 1.31e-14 8.15e-17 3.20e-33 9.68e-16 9.84e-18 | 4.33e-30 3.58e-14 1.98e-16
7 6.76e-31 1.34e-14 7.98e-17 3.94e-35 1.03e-16 8.47e-19 | 4.87e-30 3.61e-14 2.3%-16
8 1.29e-30 1.83e-14 1.47e-16 6.71e-35 1.36e-16 1.24e-18 9.42e-30 5.18e-14 4.61e-16
9 1.44e-30 1.91e-14 2.20e-16 7.37e-35 1.40e-16 1.57e-18 1.05e-29 5.50e-14 6.56e-16
10 1.78e-30 2.15e-14 1.59¢e-16 8.90e-35 1.55e-16 1.17e-18 1.29e-29 6.02e-14 3.8%-16
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From these figures, it is clear that the polynomial function of 7 or higher is

=17

appropriate for the radial fitting, achieving a standard deviation of around10™" m/s?,

which is quite a small perturbation source to a satellite. If further simplification is

m/s? accuracy.

needed, a 3 or 4" order polynomial fit can also achieve 10
To test the fitting accuracy, 2000 points along the radius between 7070km to
7090km were randomly generated. The gravitational accelerations from the fitted
polynomial are compared with the precisely computed ones, and the results are given
in Table 4.2 and Figure 4.6.

Table 4.2 Statistics of height direction acceleration (m/s”) recovery error at

(A=0",0=0).

X Y y/
Order

Max Std Max Std Max Std
3 2.35e-10 4.54e-11 7.64e-12 1.46e-12 2.72e-11 5.22e-12
4 3.69e-13 6.29e-14 6.99e-14 1.19e-14 2.22e-13 3.78e-14
5 1.13e-15 1.81e-16 4.55e-16 7.09e-17 1.31e-15 2.03e-16
6 9.89%-17 2.43e-17 4.96e-18 9.43e-19 7.89e-18 1.21e-18
7 1.02e-16 2.76e-17 2.43e-18 7.20e-19 2.06e-18 6.03e-19
8 5.10e-16 1.14e-16 3.78e-18 1.03e-18 3.89%-18 1.03e-18
9 5.59%-16 1.20e-16 3.99%-18 1.04e-18 4.13e-18 1.04e-18
10 2.27e-16 5.67e-17 4.58e-18 1.32¢-18 4.99-18 1.44e-18
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Figure 4.6 Radial gravity acceleration recovery errors at (1=0",¢=0"), plotted

against different orders of Legendre polynomial fitting.

The results also suggest using a 6" order fitting is adequate. However, if only
considering 10™~10"m/s? accuracy, which is in the same order of the Jupiter
gravitation, 4™ order fitting is the optimum choice in terms of both accuracy and

memory.
4.2.3 3D Gravity Acceleration Interpolation

The Earth gravity acceleration recovery result in altitude direction was satisfactory
using a simple 6" order polynomial fitting, but the result is unknown if the recovery
is carried out in the 3D space. In this section a 3D interpolator was implemented
based on the modified quadratic Shepard method [Robert, 1988a, 1988b]. Through

extensive testing, it was observed that only 107" m/s* accuracy was achieved using a
1° x1° gravity grid, and 10°m/s? accuracy was achieved using a 0.5° x0.5° grid.

But the 0.5°x0.5" grid requires more than 20 Mbytes memory storage. Furthermore,
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the 3D quadratic Shepard interpolation algorithm also has a large computational
burden. Hence this 3D interpolation method is not applicable for onboard processing.
Further research efforts are therefore required to solve this problem. The concept of

“pseudo-centre” is proposed in the next section.

4.3 Method of Pseudo-centres

4.3.1 Introduction

Examining gravity acceleration approximation functions is motivated by the on-
going debate between proponents of general perturbations, semi-analytic, and special
perturbation methods of generating ephemerides for near-Earth satellites. While
there is no doubt that the special perturbation methods provide the best accuracy for
most applications, the computational burden for motivates research into alternative
solution forms. The most complex acceleration model in special perturbations for
near-Earth satellites .qw6is the gravity model. There have been several attempts to
improve the computing speed for gravitational acceleration. Among these are model
truncation, pre-selecting a significant subset of the geopotential coefficients, and
developing an equivalent “mascon” representation. To date, the alternative solution
of using stored gravity acceleration tables has been impossible to implement because

of limited onboard computer memory.

The method to be examined below wrestles with the trade off between storage and
computation. It was first developed by Hujsak [1996]. The size of the stored tables
can be minimized by using more complex approximating and interpolating
algorithms. On the other hand, the computational burden can be reduced by
accepting a greater storage requirement. A different acceleration representation in
terms of an earth’s “pseudo-centre” [Hujsak, 1996] is defined, and used together
with classical polynomial fitting and bi-variate interpolators to gain a computational
advantage. The final algorithm:

e reads a large table of coefficients for a particular height,

e evaluates functions of height at points on a latitude-longitude interpolation

grid,
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e interpolates to find pseudo-centre coordinates at a position of interest, and
e and computes gravity accelerations and partials from the pseudo-centre

coordinates.

The algorithm provides the full accuracy (if not precision) of the JGM-3 70x 70
gravity model over altitudes from 400-1500km for a computational cost of a 5x5
models (from typical methods of evaluating the geopotential). The strategy presented

here achieves that goal with a storage burden of 1.8 Mbytes or less.
4.3.2 Earth Pseudo-centres

Given the Earth-Centreed, Earth-Fixed (ECEF) gravitational acceleration on a
spacecraft ¥, and using the restricted two-body equation of motion, a pseudo-centre,

¢ can be calculated. Figure 4.7 illustrates this concept.
i=—ul (4.6)
Y2

In Equation (4.6), p is a pseudo-radius to the spacecraft from the pseudo-centre. In

the above equation ¥ is the non-spherical acceleration calculated using spherical
harmonic coefficient expansion. Now the actual radius to the satellite is the pseudo-
radius plus the pseudo-centre. A pseudo-centre is a vector from the centre of the
Earth to where the centre of the Earth would need to be if the non-spherical
acceleration acting on the satellite is equal to the restricted two-body acceleration

acting on the satellite:

c=r—p 4.7
By definition,
p=lp|,and p=pp (4.8)

Also, since the pseudo-radius vector is in the opposite direction of the acceleration:

ﬁ=—ﬁ (4.9)

Therefore, substituting Equation (4.9) into Equation (4.7) yields:
c=r—pp (4.10)

Now, dot product both sides of Equation (4.6) with p:

92



1

i{= HE (4.11)
Therefore:
p= ﬁ (4.12)

Leading to the result:

eore Fp @13
F

This pseudo-centre is simply the mechanization of the concept that the Earth appears
as a point mass. Given the correct value for ¢, Equation (4.6) is exact. This method
for finding approximating functions and interpolated representations for ¢ which are
sufficiently accurate to be useful and simultaneously is computationally efficient.
These approximations can be substituted into Equation (4.6) to recover the

accelerationr . If ¥ is computed with all perturbations and the two-body acceleration,

then analysis shows that |¢| <15km for h>100km and | — Okm ash — oo . If the

C,, term is omitted from Equation (4.6) then |¢/<250m . This distinction will

become important later.

Figure 4.7 Concept of Earth pseudo-centres.
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4.3.3 Acceleration Formulation for Pseudo-centres Independent of C,

Having noted the storage benefit of omitting C,, accelerations from the pseudo-

centre definition, we introduce a new definition for the pseudo-centre. We simply

add the C, , acceleration to the right-hand side of Equation (4.6), and since the C,

acceleration appears on both sides of the expression, then ¢ is independent of C, ;:

i =_/,P_03+i:2'0 (4.14)

Po

where 1, , is the acceleration due to C, . Let:

Iy =F-T, :_ﬂ% (4.15)
0
where
p=—ri,c=r+p=r+pp=r+ L (4.16)
|r0| |r0|

We have the acceleration due to the C, ; as:

3ur (R Y
oy B 1)
.. 3ur, (R Y
rzvoz _Cz’ozr_?’z(TE] S(T&}j —1 (417)

3un, (R (1)
_C. 2 e | |5 3| _3

(][4

and C,, =-J, =-1.082626925638815x10"° (JGM-3), The computational burden

for Equation (4.17), depending on code efficiency, is 33 multiplication operations,
11 addition operations, and one square root. Allowing 5 multiplications and 4
additions for the square root, the totals are 38 multiplications and 15 additions.

4.4 Radial Pseudo-centres Polynominal Fit

As discussed in Section 4.2, for a given (A, ) the pseudo-centres within the height

range are fitted to give a set of coefficients for recovery. Different order and height
increment are tested to give the best fitting scheme. The standard spherical harmonic
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calculation for gravitational acceleration can be expressed as in Figure 4.7.

Remember we set the C, , = 0, as discussed above.

To maximize simplification for onboard computing, all the procedures in the dashed
rectangle in Figure 4.8 are included in the acceleration approximation. Thus the

output from the interpolation can be directly added to the perturbation acceleration.

Again, polynomial order from 3™ to 10" was tested, and the height increment was
from 50m to 4km in the 20km altitude range of SAC-C, that is 7070km to 7090km.
The interpolator can be expressed as:

X = mn_ (4.18)

Coordinate in ITRF
(r,2,9)
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4.5 Bi-variate Pseudo-centres Interpolation on a Sphere

4.5.1 Pseudo-centre Interpolation on a Sphere at a Common Height

The Earth’s surface is naturally subdivided into “rectangles” in latitude and

longitude, with constant increments in latitude (A¢) and variable increments in

longitude (A4 ). Polynomial coefficients for the height function are stored for each
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vertex of the “rectangle”. This subdivision makes indexing into the array of stored
points an easy (and computationally efficient) exercise.

There are a variety of two-dimensional interpolation methods. The criteria for
selecting an interpolation algorithm prioritizes computational speed and accuracy

(versus o), with storage requirements being treated as a secondary issue. These

criteria practically eliminate all higher-order interpolators where first and second
partial derivatives are used [Press, et al., 1992] to describe the variations in the

dependent function ¢(p, 4,h)over the domain¢ and 1.

Ultimately the choice reduces to three bi-variate interpolation techniques, the three-
point, four-point, and six-point methods listed in Abramowitz and Stegun [1992],
from which the six-point bi-variate interpolation formula was selected:
¢(g,. 44, 0)=c(g, + PAS, A, +0ALN)
=.5q(q —1)c(¢0,/10 —A4, h)

+.5p(p~De(g, ~Ag, 2,h)

+(1+ pa—p* — % Je(dy, 4, h) (4.19)

+.5p(p—2q+1)e(g, +Ag, 4o,h)

+.5q(q—2p +e(dy, 4, + AL,h)

+ pace(g, +Ag, A, +AA,h)

where

A
P __and q= %y

_ﬁ“p_Z’O ¢p_¢0

We have0 < p<land0<q<1,and Agand A1 and a convenient grid in latitude and

p (4.20)

longitude. Figure 4.9 illustrates this concept.
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Figure 4.9 Six-point bi-variate interpolation at a common height.

Equation (4.24) requires 20 multiplication operations and 14 addition operations for
each component ¢, or 60 multiplications and 42 additions for all three components.
Computing p and g adds one additional multiplication and two additional operations
each, for a total of 62 multiplication and 46 addition operations.

A parametric study was performed where the size of the longitude grid was varied to

determine the trade-off between accuracy and the interpolation grid size (A¢ and
AA). Values of Agstudied included 0.4° < A¢ <1.5 and the respective longitude
increments A¢g = AL/ |cos¢|, with AA constrained to be less than 5 near the poles.

A representative, but not exhaustive, search over the surface of the Earth and over

heights between 100km and 1500km was performed. At each position (¢0,/10,h) a

set of six interpolation points were identified:

(¢, 4. h), (¢ — A, 20,0), (¢, +Ag, 40,h),
(4, A —ALN), (5, Ay + ALD), (B, +Ad, A, + AL D)

The full acceleration due to JGM-3 was computed for each interpolation point using
Equation (4.1), the corresponding pseudo-centres were computed, and the pseudo-
centre components were substituted into Equation (4.24). Accuracy assessment was

made for p=0.5,q=0.5.
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In general, the latitude grid A¢ depends on height. At h=100km smaller increments
(A¢ =0.5") are required for E(ci <.2).. However, at h > 400km larger increments

(A¢ =1.0") suffice.
4.5.2 Gravity Grid
The grid size is decided by the satellite trajectory that is projected on the Earth-fixed
frame. Of course, this grid must cover the entire possible trajectory that the satellite

would go through.

Table 4.3 Spacecraft trajectory ranges expressed in the ECEF frame.

Radius Range Latitude Range Longitude Range
(km) (degree) (degree)
T/P 7714 ~ 7718 -66 ~ 66 0~ 360
FEDSAT 7175~ 7186 -85~85 0~ 360
SACC 7075 ~ 7088 -82 ~ 82 0~ 360
CHAMP 6771 ~ 6808 -87 ~ 87 0~ 360

To achieve a satisfied interpolation result, a dense grid is needed. From the results of
Section 4.2 and the last section, we can see that the acceleration depends more on the
latitude than the longitude because the solid Earth is approximately symmetrical
around the rotational axis. Thus we can use a larger grid in the longitude direction
and a smaller one in the latitude direction. Furthermore, larger increments of
longitude as latitude increases can reduce storage requirements. Instead of using a
single grid size, we divided the whole Earth’s surface into several bands with
different grid sizes. In order to simplify indexing into the arrays holding the pseudo-
centre coefficients, there is an overlap between sets of pseudo-centres coefficients.
Only single precision (4 bytes) floating point values were used. The number of
storage bytes needed for each latitude and longitude is calculated by:
Polynomial order x 3 pseudo-centre components x 4 bytes
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Table 4.4 SAC-C gravitational acceleration approximation 1" x1° grid with order = 4.

latitudes AA # lons # lats # bytes each lt)(;fttils
1 —85° ~_73 |30 122 13 48 76,128
2 —-75° ~-59° | 2.0 182 17 48 148,512
3 —-61° ~-47° | 15 242 15 48 174,240
4 —49° ~ 49° 1.0 362 99 48 1,720,224
5 47° ~671° 15 242 15 48 174,240
6 59° ~ 75° 2.0 182 17 48 148,512
7 73° ~ 85° 3.0 122 13 48 76,128
2,517,984
4.5.3 Experiment Result

Previous experiments suggest a 10° ~ 107 m interpolation accuracy for the pseudo-

centre position in the altitude direction. Then a 107 ~10° m pseudo-centre
accuracy can be achieved after the final sphere interpolation. The acceleration then
can be recovered through Equations (4.13) and (4.22). In this section, the

acceleration was recovered using this method at three small 0.5° x 0.5° zones:
I: A=0"~20"; ¢=0"~10"; h=7070~ 7080km, Ah =1km
II: A=0"~20"; ¢=50"~60"; h=7070~ 7080km, Ah =1km
I1I: A=0"~20"; @=74~84"; h=7070~ 7080km, Ah =1km

The results were compared to the original calculated value.
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Figure 4.10 Gravity acceleration interpolation accuracy compared with the

rigorously calculated value.
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Figure 4.11 Computing time compared with the spherical harmonic method.
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The gravity acceleration recovery error is around10™** ~107"°m/s?, of the order of
the gravity attraction from the planet Neptune. On the other hand, the computational
burden is much less than the traditional method using a 70 x 70 Earth gravity model.

4.6 Accuracy Analysis for Complete Algorithms

There are two ways to assess the end-to-end accuracy of the algorithm. One way is to
implement it in ephemeris integration and to compare ephemeris accuracies. The
second method is a systematic search over the Earth, evaluating the acceleration
accuracy at a great number of latitudes, longitudes, and heights, and comparing the
approximation to that from the complete model. Having tested the latter in the

previous section, this section will present the results from the first type of test.
4.6.1 Accuracy Analysis

A test was implemented to step through all longitudes and latitudes, on a

representative grid, and at each selected longitude (4,) and latitude (¢,) to define a
local grid of six points, as described earlier. This analysis was performed once for an
interpolation domain of A¢g=05", AL=Ag/cosg (constrained to |[AZ| <5 and
again for A¢p=1.0". The search grid over the northern hemisphere of latitude
4, € {-85",85"Jand longitude 4, € {0°,...,359.5'}. Not all points on the Earth were

evaluated. The evaluation grid was 5’ in latitude and 10" in longitude.

In general the worst-case error statistic (Equation (4.18)) at any test point

(¢,,4,) was found at a height of 7090km, where JGM-3 errors are smallest, and
therefore more difficult to satisfy. Worst-case error statistics for E(c,) were

generally less the 0.2 over the entire northern hemisphere. In a few cases where

E(ci)z 0.5, it appears that the least squares solution for a;and b; in Equation (4.22)

converges to a relative minimum instead of the absolute minimum. If the accuracy

criterion is E(c,)<.1, then Ag = 0.5"is required. However, relaxing the criterion to

E(ci ) <.2,allows A¢ =1.0", which greatly reduces storage requirements.
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4.6.2 Orbit Integration Using the Gravity Acceleration Approximation Method

From Section 4.5.3 we can see that the recovered gravitational acceleration is at the

107 ~107"®m/s” level. This error is a high-order perturbation and can be neglected
for most applications. However, the method must be validated through a real orbit
integration test. This is critical because the cumulative effect of random errors
introduced by these approximations is not known.

As discussed in Chapter 3, the simplified method achieves metres level accuracy for
short-arcs, compared to using a full model. In this test we replace the truncated
30 x 30 gravity model with the proposed gravity acceleration method. A 6™ order
polynomial generated 1" x1° gravitational acceleration grid for SACC was used.
Figure 4.12 illustrates the accuracy of 1 day’s orbit integration using a
30x 30 gravity model and the gravity approximation method, with the results
compared to the 70x70 full model. We can see great improvement in orbit

integration.

In addition, we compared the computational burden of orbit integration with 70 x 70
gravity model, with 30x 30 gravity model and the gravity approximation method.

Figure 4.13 illustrates the result.
We found that the Gravity Acceleration Approximation Method reduced computing

time by around 800% compared to the 70x 70 gravity model, with a small memory

usage increase.
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4.7 Computional and Storage Requirements

4.7.1 Computional

Burden

The computational burden for each step in calculating gravity acceleration discussed

in each section above is now summarized in Table 4.5

Table 4.5 GAF method calculation burden summary.

Calculation Multiplications Additions
C20 recovery (Equation 4.18) 38 15
Six-point interpolation (Equation 4.19) 62 46
4™ order polynomial (Equation 4.16) 127 110
Total 227 171

This computational burden is comparable to the computational overhead of a
5x5acceleration model, with a margin for computing indices into the tables, loop
indexing, and decision functions. The following were calculated from one
programmer’s implementation of Equation (4.1) and the associated support
calculations (including recursive generation of Legendre polynomial evaluations):

Table 4.6 Calculation burden summary for spherical harmonic calculation.

Degree and Order Multiplications Additions
4x4 184 134
5x5 236 198
66 356 286
8x8 576 438
12x12 1160 902
30%30 6164 4970

These calculations assume that r,¢,4,cos¢,sing,cosA,sinA are available as

common input to both methods and that conversion of the output accelerations
between the ECI and ECEF frame is external to both methods.

4.7.2 Storage Requirements for Complete Algorithm
The storage strategy has a direct bearing on the storage penalty for the Gravitational

Acceleration Approximation Method implementation. It also has a direct bearing on
the RAM requirements for exploiting this algorithm. The following seeks to take
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advantage of a larger bin size in longitude (A/i) at higher latitudes, while holding the

latitude bins fixed at 0.5 or1.0", as studied above.

The storage strategy identifies broad latitude bands within which the longitude bin
size (Aﬂ)is constant. These bands necessarily overlap because the interpolator uses
three latitude values (¢0 —AD, &y, by +A¢). Furthermore, to reduce the complexity of
computing an index into the table, the longitude grid extends from —AA to (or
beyond) 360" . When the longitude increment A4 exactly divides 360, then the
longitude grid terminates at360°, otherwise the longitude grid extends one point

beyond 360" .

There is only one point at either pole, and the equator is duplicated in adjacent
northern hemisphere and southern hemisphere tables. This is because the increment
to latitude (Ag) is negative in the southern hemisphere. Again it was decided to
duplicate the equator (and one latitude increment) in these tables to reduce

complexity in indexing the table.

The polynomial coefficients a; and b; in Equation (4.22) are stored as “single

precision” floating point variables (unformatted). The storage penalty for each
(45, 4, )in the table is:

3 components of pseudo-centre x 4 coefficients x 4 bytes = 48 bytes
This storage scheme is not optimized for latitude band selection and some additional

saving are possible.
4.8 Summary

An alternative method to calculating the Earth gravity acceleration has been
validated in this chapter. Instead of calculating the harmonic coefficient using the
recursive algorithm, an Earth pseudo-centre grid was generated on the ground and a
simple two-step interpolator was used to recover the gravity acceleration on-the-fly.
Extensive testing was shown that:

105



The Earth gravity acceleration changes smoothly in the altitude direction and
can be easily recovered from a grid using 3~6 order polynomial interpolation;
with the acceleration accuracy being around 10 ~10™*m/s?.

The Earth pseudo-centre can be recovered at the 10° ~107m level in the
altitude direction using a similar 3 ~ 6 order polynomial interpolation; while
a final 107 ~10° m accuracy can be achieved after the spherical
interpolation;

The Earth  gravity  acceleration  can be  recovered  at
the10™ ~10"°m/s*accuracy level using a 1° x1° pseudo-centre grid. The
computational burden is much less than for the conventional method.

Using the Gravity Acceleration Approximation Method, the computational
burden of orbit integration is equivalent to that of a 5x5 gravity model, but

with the accuracy of a 70 x 70 model.

This method shows a great promise for onboard orbit determination. Though the

results are very encouraging, more improvements can be made:

There are alternatives in force model formulation which can be used to make
special perturbations more computationally competitive, with semi-analytic
and analytic techniques. This development is but one example. Elementary
techniques have been used to generate a hundred-fold improvement in
gravity acceleration computational efficiency, achieving 70 x 70accuracy for
the computational burden of a 5x5 model, with a storage penalty of 2.5
Mbytes. With some additional work there should be additional savings in
both computational efficiency and in storage requirements.

The storage penalty of 2.5 Mbytes is still not optimal. There are savings in
simply using more latitude bands (e.g. smaller incremental changes inAAZ).
An investigation of other functional forms is planned, including continued
fractions, in an effort to reduce the number of coefficients to be stored.

The computational burden is not optimal. The possibility of other function as
forms in place of quotients of polynomials hints at other efficiencies.
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Chapter 5
Quality Control and Improvement of Onboard

GPS Measurement Processing

The quality of onboard GPS measurements and navigation solutions is normally
worse than those obtained on the ground due to the harsh observation conditions in
space. As a consequence, great care has to be taken to minimize the degradation of
the measurement quality. This mostly concerns the process of outlier detection. In
addition, if we take the GPS measurements at every sample epoch of 1 ~ 10 seconds
directly to form the observation equations, the nominal orbit and partial derivations
need to be generated at these epochs, which in turn results in a heavy computational
load. To improve this situation, a sliding-window carrier-phase smoothing filer has
been designed to generate a smoothed observable every several minutes. With no
Selective Availability (SA) and an improvement of the broadcast ephemerides, this
technique is reasonable and feasible. This chapter will focus on outlier detection and
phase smoothing procedures to facilitate clean and compacted GPS data for efficient

onboard orbit estimation.
5.1 GPS Code Measurement Models

GPS measurements include code-based pseudo-ranges, which are computed from
measured transit time, and carrier phase-based ranges. Since these ranges are biased
by satellite and receiver clock errors and other errors, they are called “pseudo-
ranges”. In this context, onboard orbit determination is based on pseudo-range data,
regardless of smoothing with carrier-phase or not. In the following subsections, we

examine the error sources of the GPS code measurements.
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5.1.1 Basic Zero-difference Code Observation Equations

The code measurement P* from a spaceborne receiver to a GPS satellite can be

modelled as:

P! =p* —Cat" + CSt + Apyy + APy + DPly o + Dy + ] (5.1)
where

i = subscript identifying the L, or L, frequency

k = subscript identifying different GPS satellite

p* = geometic range between the GPS satellite £ and the receiver

C = speed of light

ot* = GPS satellite’s clock error

ot = receiver’s clock error

Ap'' = relativistic effect

Apl' =ionospheric delay

Ap., .. = GPS satellite antenna phase centre offset

Ap,,. = Spacecraft GPS antenna phase centre offset

ek = random measurement noise of range

5.1.2 Ionospheric Delay

The ionosphere is a region of the Earth’s upper atmosphere, approximately 100km to
20,000km above the surface, where electrons and ions are present in quantities
sufficient to affect the propagation of radio waves. The path delay will be
proportional to the number of electrons along the slant path between the satellite and
the receiver, and the electron density distribution varies with altitude, time of day,
time of year, solar and geomagnetic activity, and the time within the 11 year solar
sunspot cycle. The magnitude of the ionospheric path delay depends on the

frequency of the radio signal. The ionospheric bending on L, GPS measurements

will vary from about 0.15m to 50m [Clynch & Coco, 1986]. However, more accurate

corrections can be made by using the dual frequency ionosphere-free combination:
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PIF: 2f12 2P1_ 2f22 2P2 (52)
L= 1= 1

where f, and £, are the frequency for the L, and L, carrier waves, respectively.

5.1.3 Relativistic Effect

The relativistic effects on GPS measurements can be summarized as follows. Due to
the difference in the gravitational potential, the satellite clock tends to run faster than
the ground station’s [Spilker, 1978; Gibson, 1983]. These effects can be divided into
two parts: a constant drift and a periodic effect. The constant drift can be removed by
offsetting the GPS clock frequency a little lower before launch to account for that
constant drift. The periodic relativistic effects can be modelled for a high-low

measurement as:

APy =l V.1, ) (5:3)
where

Ap,,.,, = correction for special relativity

C = speed of light

r,v_ = the position and velocity of the LEO satellite or tracking stations

s s

r,,v, =the position and velocity of the GPS satellite

The coordinate speed of light is reduced when light passes near a massive body

causing a time delay, which can be modelled as [Holdridge, 1967]

GM,, v +r1., +
Apgwl — (1+ 7) Ze In( tr rec p) (54)
C rtr+rrec_p

where
Ap,,, = correction for general relativity
¥ = the parametreized post-Newtonian (PPN) parametre (y =1 for
general relativity)
GM, = gravitational constant for the Earth
o, = the relativistically uncorrected range between the transmitter and
the receiver

= the geocentric radial distance of the transmitter

tr
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r = the geocentric radial distance of the receiver

rec

The total relativity correction is:

Ap rel = A,D srel + Ap grel (55)

5.1.4 GPS Satellite Antenna Phase Centre Offset

Satellite antenna phase centre offsets must be dealt with appropriately. These offsets
are given in the same satellite-fixed coordinate system that is also used to express
solar radiation pressure. Starting on 1998-Nov-29 (GPS Week 986, day 0) the IGS
products incorporated the antenna phase centre offsets given in Table 2.1. The origin
of the coordinate system is at the satellite's centre of mass, the k-axis points toward
the Earth centre, the j-axis points along the solar panel axis, the i-axis completes the
right-handed coordinate system and lies in the Sun-satellite-Earth plane.

Table 5.1 GPS satellite antenna phase centre offset values adopted by IGS.

Block II/TIA: (0.279m, 0.000m, 1.023m)
Block IIR: (0.000m, 0.000m, 0.000m)

The offset then can be described in Earth-Centred and Earth-Fixed (ECEF) frame as:
Apgps_ant = (’i\;j’lz)_] OT (56)
where (f,j,ﬁ) is the unit vector of the coordinate system. O is the antenna phase

centre offset given in Table 5.1.
5.1.5 LEO GPS Receiver Antenna Phase Centre Offset

For the GPS receiver onboard a satellite, the antenna offset also must be dealt with.
The orbit integration equations are solved for using the inertial, Cartesian J2000
system. That means the satellite trajectory is represented by the movement of the
mass centre of the satellite. To account for the GPS antenna offset, the offset must be
transferred from different spacecraft coordinate systems to the inertial system. The
spacecraft coordinate system includes Height-Crosstrack-Alongtrack (HCL) system,
Earth-Probe-Sun (EPS) system, UVW system, etc. This depends on different

missions.
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Table 5.2 Spacecraft GPS receiver antenna phase centre offset values.

Mission

Coordinate System

Antenna offset (mm)

Topex / Poseidon

Body-fixed HCL system

(4700.0, 1947.0,41.0)

SACC Body-fixed HCL system (810.8, -345.0, -29.4)
CHAMP Body-fixed HCL system (-1488.0, 0.0, -392.0)
FedSat Body-fixed HCL system (38.0, 24.0, 16.0)

5.1.6 Single-difference Code Observation Equation

The receiver’s clock error ot is the biggest error source in Equation (5.1). The clock

In a receiver is not as accurate as the one in the GPS satellite. A bias of 0.001

seconds equals approximately 300 kilometres error in length units. However, this

error can be removed if we take a single-difference between different GPS satellites

at the same epoch. In this way, the receiver clock is removed from the observable.
APY = P* — P/ = Ap" + C(&t" - 6t’ )+ AEY +¢&f ¢/ (5.7)

where:
AP"/ = difference between two measurements from satellites k£ and ;

Ap!/ = difference between two geometric distances
ot*, ot = clock error for satellite k and j

AE*/ = residual system error

e/ —&/ = measurement noise

1

On the other hand, the measurement noise &' —¢/ will be 2 times larger than the

zero-differenced data.

5.2 Outlier Detection

The proposed outlier detection method is a recursive filter that processes the un-
differenced GPS measurements. The main problem when processing un-differenced
GPS data is to reliably and automatically detect outliers in code observations. The
data cleaning of differenced GPS data is much easier because many common error
sources may be removed by forming the differences, in particular receiver and
satellite clock errors. However, several algorithms have been developed which seem
to be reasonably successful in “cleaning” zero-differenced GPS data. Similar to the
TruboEdit program of GIPSY, the developed algorithm is suitable for the onboard

short-arc filter.
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The algorithm requires the use of dual-frequency code and phase observations. The
major problem with this approach resides is that it depends heavily on the quality of
the code observations. In particular, the noise of the code observations is assumed to
be below 0.5 the wide-lane cycles, i.e., 43cm. This requirement is easily fulfilled if
anti-spoofing (AS) is not active. For most state-of-the-art geodetic receivers the

noise of the code observations under those conditions is at the 20cm level.

Each satellite is processed one-by-one in the following steps:
(1) Basic screening to delete the large outliers and delete short phase connect
arcs.
(2) Screening of wide-lane linear combination for outliers and cycle slips.
(3) Screening of the difference between the code and phase ionosphere-free
linear combinations. This screening is performed to remove bad

observations, which were accepted in the wide-lane screening.

5.2.1 GPS Observation Linear Combinations

To process the un-differenced GPS data, the most useful method is to form different
linear combinations using basic carrier phase and / or code measurements. The code
and phase linear combination can be expressed as:

L,,=m*L +n*L,, P, =m*P, +n*P, (5.8)

Theoretically we can form an infinite number of these “artificial” observables with
different » and m, but only very few of them are actually useful for the purpose of
outlier detection, ambiguity fixing and reducing the ionospheric effect. Three
properties of linear combination signals are the key points: the wavelength,
ionospheric effect and the noise level.

The linear combinations of Z, and L, GPS signals are usually performed to assist the
cycle slip detection and cycle ambiguity resolution processes, and certain
combinations can also be used to eliminate the first-order ionospheric effect. The
linear combination of the phase’s signal, which preserves the integer nature of the

cycle ambiguity, can be formulated as follows (in cycle units):
¢m,n = m*¢l +n*¢2 (59)
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And the linear combination in length unit can be formulated as:
 mxfi*Lo+nx* f,*L,

L = A fa === o (5.10)
The basic properties of the linear combination signal can be expressed as:

Frequency: Son =m* fi+nx 1,

Wavelength: 112, =mlA +nl 4, (5.11)

Cycle Ambiguity: N,,=m*N +n*N,

The linear combination will not change the magnitude of the frequency-independent

errors and biases, such as ephemeris error and tropospheric bias, but it will change

the magnitude of the frequency-dependent errors and biases, such as ionospheric bias,

noise, and multipath. The magnitude of the ionospheric effect on the linear

combination is:

m* f, *dion, + n* f, *dion,
m* f,+n*f,

where dion, and dion, are the magnitude of ionospheric effects on the L, and

(5.12)

dion,, , =

L, signals, respectively. The first-order ionospheric effects in length unit can be
expressed as:

dion, = C| f%, dion, = C| [} (5.13)
where the C is a constant whose value is dependent on Slant Total Electron Content.
Thus the Equation (5.11) can be written as:

C_ m*frtnt/, (5.14)
Sixf, m*fi+nxf,

The magnitude of the ionospheric effect on the linear combination can be written as

dion,, , =

function of the magnitude of the ionospheric effect on L, signal as:
dion, = isf *dion,, isf =JLs"EL TN (5.15)
Sy mxfi+nxf,

where the isf'is the lonospheric Scale Factor.

Furthermore, the linear combination process will also alter the noise level of the

observations. If the noise in the L, and L, phases are characterized by the same
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standard deviation in cycle units o,, then the standard deviation of the linear
combination phase in length units o(L, ) can be written as:

o(L,,)=4,,* (m® +n?)"? « o, (5.16)
Based on the above equation, the noise level of the linear combination phase can be
written as a function of the noise level of L, phase in length units:

/12 *(mZ +l’l2)1/2

(5.17)
m* A, +n*i,

o(L,,)=nsf*o(L,), nsf=
where the nsf'is the Noise Scale Factor.
Based on the above analysis, Figures 5.1 and 5.2 illustrate the wavelength,

ionospheric scale factor and noise scale factor for different linear combinations.

Table 5.3 lists some commonly used linear combinations.
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Figure 5.1 GPS observation linear combination property: wavelength.
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Figure 5.2 GPS observation linear combination property: lonospheric & Noise

Scale Factors.

Table 5.3 Some linear combinations of the GPS phase observables.

m n Wavelength (cm) isf nsf description
-7 9 1465.3 350.4 877.9

-3 4 162.8 18.2 42.8 Double wide-lane
-2 3 56.4 5.5 10.7

-1 2 34.1 2.8 4.0 Semi wide-lane
0 1 24.4 1.6 1.3 L2 signal

1 -1 86.2 -1.3 6.4 Wide-lane

1 0 19.0 1.0 1.0 L1 signal

1 1 10.7 1.3 0.8 Narrow-lane
2 -2 43.1 -1.3 6.4 Half wide-lane
4 -3 114 0.09 3.0 Narrow-lane
5 -4 10.1 -0.07 3.4 Narrow-lane

5.2.2 Basic Screening

At this stage, unreasonable range and phase errors, such as negative range

measurement and very big range values, are deleted. Normally these errors are

caused by receiver malfunction. A set of criteria is established for different missions.
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The most useful ones are P,,, and P,

min !

based on the geometry between spacecraft

and GPS satellite:

S 2 2 GPS 2 2
Pmax = al x (\/(Hmax + rearth) - rearth + \/(Hmax + rearth) - rearth ) + Pclock
GPS N
Pmin =, X (Hmin - Hmax) - Pclock
(5.19)

Using an amplifier factor of 1.2 and 0.8 for P, and P, respectively. With a max

min !

of 300km clock error, we can derive the information in Table 5.4.

Table 5.4 Screening criterion for the P-code measurements.

Pmax (m) Pmin (m)
TOPEX 36,500,000 14,800,000
SACC 35,000,000 15,300,000
CHAMP 34,300,000 15,900,000
FEDSAT 35,200,000 15,200,000

The ionospheric delay can be expressed as the difference of the two P-codes:

Ap,, =P, P (5.20)
If the magnitude of any ionosphere combination is larger than a given value, both 7,
and P, will be deleted. The big value in this combination will either suggest a large

ionospheric delay or simply an outlier. We can delete them in both cases. Typically a

15m value is used in our experiments.

Furthermore, another strict screening criterion is to delete any data within short
phase-connect arc which is shorter than a given value. Experimentally we have
found that an arc less than 1 ~ 2 minutes will lead to lots of outliers. A very short
phase-connect arc is also not very useful in the phase smoothing process. But more
attention should be paid when the measurement sample rate and the onboard GPS

operational mode is unusual.

5.2.3 Data Screening Based On Wide-lane Combination

The wide-lane combination, which was called the Melbourne-Wiibbena combination

in early GPS literature, is a linear combination of both carrier-phase (Z, and L, ) and

P-code ( A, and P, ) observables [Wiibbena, 1985; Melbourne, 1985]. This
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combination eliminates the effects of the ionosphere, geometry, clocks and the
troposphere. It comes from the wide-lane combination of both code and phase
measurement. The phase of the wide-lane combination is defined by the phase

difference @, — @, (in cycles). Hence the wide-lane phase delay can be expressed as:

_q) w/lw = % = p + dionf‘le /(fi‘LZ - f22 )+ ﬁ‘wbw (521)
1 2

where the wide-lane wavelength is A, =c/(f, - f,)~86.2cm, and the wide-lane

LW

bias is b, = b, —b,, which is an integer number because both b, and b, are integers.

Then the code wide-lane combination
p = fih+ 2P
N R
That is, by subtracting Equation (5.20) from (5.19), the Melbourne-Wibbena
combination can be expressed as:
1 1

= p+d,, fif, (2= 17) (5.22)

L = L —f.L)— P P. 5.23

" fl_fz(fll SoL,) f1+f2(f11+f22) (5.23)
and we obtain the wide-lane bias

b, ==L, -P.) 5.2)

w

Apart from the wide-lane ambiguity the remaining signal should be pure noise, with
an RMS error of approximately 0.7 times the RMS of the code observations on the
L, frequency. If the noise of the Melbourne-Wibbena combination has an RMS
error below 0.5 wide-lane cycles (43cm) it is almost a trivial task to detect all cycle
slips and outliers. Only very few epochs are needed to estimate the wide-lane
ambiguity, and hence jumps and outliers can easily be detected. Of course, only the

difference between the cycle slips on the two frequencies is detected (1, = n, —n, ).

Note that in the very unlikely case where the integer number of cycle slips on the

two frequencies is identical (i.e.,n, = n,) no cycle slip will be detected (n = O).

The best way to improve the reliability of screening data is to generate arcs as long
as possible. An arc is defined by specifying a minimum number of continuous

observations and a maximum time for data gaps. Typical values are a minimum of
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10 data points per arc and a maximum of 3 minutes without observations before

starting a new arc.

An onboard filter calculates time-averages of b, both before and after a cycle slip or

outlier, and the difference is required to be close to an integer. That is, an a priori
RMS scatter o of 0.5 wide-lane cycles is assumed, and the algorithm sequentially
updates the averaged wide-lane biases and the RMS scatter, using the following

recursive formulae:

b, =b, +=(b, ~b, ) (5.252)

62 = O-izl +- [(bwi - b W1 )2 - O-[Zl] (525b)

where Em Is the mean wide-lane bias, and i is the current number of data points in the
data arc. Subsequent epoch estimates EWM are required to lie within 40, of the

running mean Bw,.- The filter deletes isolated outliers, and any two consecutive

outliers within one cycle may indicate a cycle slip. Then, beginning with these two
points, it starts a new average and continues time averaging until a new potential

cycle-slip is discovered, and so on.

The critical data length required for a successful wide-lane phase connection is
dependent on the pseudo-range precision and multipath. For currently available
space GPS receivers it is as little as one minute before and after each cycle slip and

outlier.
5.2.4 Data Screening Based On Ionosphere-Free Combination

We found that sometimes the data was not cleaned successfully due to systematic
errors in the Melbourne-Wibbena combination. These systematic errors are most
likely caused by the filtering and smoothing procedures employed in the receivers.
Therefore, an additional data-screening step was added to the program. In this step
we build the difference between ionosphere-free linear combinations for the phase

and code observations:
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L, = L -1 L P — [P, 5.26
ffz(ff)flf(ff) (5.26)

As in the case of the Melbourne-Wibbena combination this linear combination
should consist of noise only. The disadvantage is the amplified noise (about 3 times

the noise of the P, observations). The noise is thus about 4 times larger than the

noise of the Melbourne-Wibbena combination. Nevertheless, the check is useful for
removing errors caused by systematic effects. The check consists of an outlier
rejection scheme, which is very similar to the one used for screening the Melbourne-
Wibbena combination. The starting value for the maximum RMS is larger (typically

1.6 ~ 1.8 metres), to account for the higher noise of these observations.

5.3 Phase Smoothing Filter

5.3.1 Methodology

The application of the above procedures ensures the code and phase observations
have been quality cleaned out. This enables us to now smooth the code observations,
using carrier phase observations, for the continuous data arcs. For code smoothing it
was decided to actually replace the code observations in a clean observation arc by
the phase observations shifted by the mean difference code-phase in the arc. Of
course, we have to account for the opposite sign of the ionospheric effect for the
code and phase observations.

Briefly, carrier-phase-aided smoothing simply averages the point-by-point difference
between the continuous phase measurements (which are extremely precise but have
an arbitrary bias) and the simultaneously acquired pseudo-range measurements
(which are far noisier but unbiased), thereby smoothing down pseudo-range noise
over the averaging period to produce a precise estimate of the phase bias. With just a
few minutes of averaging a 1-sec pseudo-range noise of 1m can be reduced to 10 ~
20cm. (In general the noise reduction will not go as the square-root of the number of
samples because of the low-frequency multipath error in the pseudo-range data.) The
averaged phase-pseudo-range bias can then be added back to any phase point (or all
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of them) to produce absolute pseudo-range measurements more precise than the
original data.

For real time applications this smoothing can be carried out recursively to maintain a
running current estimate of precise pseudo-range, an estimate that will improve with

time as more points are averaged. If we let P, denote the pseudo-range measurement
acquired at time » and d, the delta-range measurement between times n-/ and n
obtained from continuous carrier-phase, then the smoothed pseudo-range P, at time

n+1 1s given by:

n 1
P+d )+——P
I’l+1( n n+l) I’l+1 n+l

P

n+l —

(5.27)

Intuitively we see that this simply averages the current pseudo-range value P, ,in
with the previously averaged value P, that has been propagated forward with the

current delta-range measurement d,_, So long as phase is continuously tracked; there

)
is no error growth from continuously propagating the current averaged pseudorange
forward with delta range. This smoothing can therefore be carried out indefinitely
while continuous phase lock is maintained. (If phase continuity is broken, the
smoothing process may have to be restarted.) Note that since SA dither is identical
on the carrier and pseudo-range, this technique does not smooth SA dither error, only
measurement error. But since SA dither does not therefore interfere, this is the most
effective way of smoothing and compressing pseudo-range over long periods and is
used extensively in many GPS applications. The noise of the smoothed pseudo-range
is decreased:

5%(P) = %52(13) (5.28)

5.3.2 Sliding-window Phase Smoothing

There are several ways to employ this kind of smoothing in real time operations. For
the slow update process described here we can simply replace all 1 or 10 seconds
pseudo-ranges acquired over the update interval (say, 300 measurements over 5
minutes) with the single smoothed pseudo-range produced at the end of the interval,

and then restart the smoothing operation for the next interval (in order to maintain
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independence of successive smoothed points). This greatly reduces the data rate (and
the required processing time in direct proportion), frequency content in the long-term
corrections) and leads to no loss of precision (since all acquired pseudo-range
measurements go into the smoothed result). Where precise high rate data are
required, such as for the fast corrections, one can simply carry out Equation (5.25)
continuously and use the resulting smoothed pseudo-ranges at each 1-second time
step. This will result in highly correlated absolute errors between successive
smoothed points, while the relative point-to-point precision will approach that of
pure carrier-phase. For our onboard short-arc method we used the first approach,
which generates the smoothed pseudo-range data every 1 ~ 5 minutes.

For the slow updates the nominal update interval will be 5 minutes, but could be set
to any value. This smoothing filter is a recursive estimator which processed the
measurements sequentially, as they come in, and each full 5 minute measurement

update requires just a small amount of additional computation.

5.4 Close-form Single Point Position Algorithm

5.4.1 Introduction

Traditionally because the observation equation related to a standard GPS point
positioning is non-linear, a recursive least squares method is required to solve for the
user position and receiver clock bias. An initial position estimate is always needed
for this recursive method. Basically an estimate within 300km of the correct value is
enough for a convergent solution. But for a high-speed space application, sometimes
it is hard to obtain such a good initial coordinate value. Furthermore the short-arc
processing also requires frequent re-initialization if the data is not available for a
long arc. To solve this initialization problem a closed-form non-recursive single

point position algorithm was proposed.
The quest for an analytical and non-iterative solution to the GPS absolute positioning

problem has received much attention [4bel & Chaffe, 1991; Bancroft, 1985; Chaffe
& Abel, 1994; Grafarend & Shan, 1997a, 1997b]. Many close-form formulas have
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been proposed for a direct solution based on four GPS pseudo-range observations.
The solution is exact as it uses only four measurements to solve for the four
unknowns — the receiver’s 3D position components and the clock bias of the GPS

receiver.

5.4.2 Methodology

The observation equation for the pseudo-range measured between the receiver with

unknown position r=(x,y,z) , and the satellite i with known position

r'=(x',y',z"), is given by [Yang, 1995; Goad & Tang, 1997]:

P =\/(xi —x)z +(yi —y)2 +(zi —2)2 +c-0T —coT" +é' (5.29)
Equation (5.27) is a non-linear equation with multiple unknowns. The first term on

the right-hand side is the geometric distance between the receiver and the satellite.

The receiver clock error expressed in units of length is denoted as c- ¢, with c the
speed of light in a vacuum. The satellite clock error is ¢’ which, together with the

satellite’s position (xi,yi,zi), is available from the broadcast navigation message.

The measurement noise is characterized by the error term &'.

In order to solve for the receiver’s position (x, y,z)and clock errorc- ¢, Equation

(5.29) must undergo simplification. Since the satellite’s clock error is known from
the navigation message, it can be removed from the observation equation. It is also
common practice to discard the ionospheric and tropospheric effects and the

measurement noise. Thus, we obtain

P = \/(xi —x)2 + (yi —y)z + (zi —Z)Z +c- o (5.30)
There are four unknowns in Equation (5.29), so four pseudo-range measurements are
needed to obtain a unique answer. Substituting » for ¢-oT and rewriting Equation
(5.29) as:

P -b= \/(xi - x)2 + (y[ - y)2 + (zi - 2)2 (5.31)

leads to

P’ —2P'b+b’ =(xi —X)2 +(yi —Y)Z +(Zi _Z)Z (5.32)
=x’ 2yt x4y 2y y 4 =22+ 2 o
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or alternatively,

(xiz + yi2 - Piz)— Z(xix +y'y+ziz- Pib)

= —(xz +y°+2° —bz) (539
Define the Lorentz inner product for 4-space as [Bancroft, 1985]:

(g.h)=g"Mh (5.34)
with g,h e R*and a 4x4 matrix

M,, = [13*3 0 } M'=M=M" (5.35)

0 -1

It can be observed that

(Mg,Mh) = (g, h) (5.36)

Substituting Equation (5.34) into Equation (5.33), we obtain the following

relationship:

e -CeIE) -5 CIED-

for each pseudorange measured to satellite i. Since four pseudo-range observations

are required to solve for four unknowns, we can define the matrix B as:

1 11 1
P

Xy oz
2 2 2 2
x* y° x* P
B= 2 2P (5.38)
x4 y4 Z4 P4

Where (x',y",z') are the coordinates of the i-th satellite and P’ is the measured

pseudo-range to satellite i (i = 1, 2, 3, 4). Then the four pseudo-range equations can

be expressed as:
o« BMm +AT=0 (5.39)

where

1
A:1<N,H>, and =" (5.40)
2\ b [Th 1
1

And a isa 4x1 vector with
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1]

Solving Equation (5.39) results in:
m —MB*(At+a) (5.42)

Substituting Equations (5.36), (5.40) and (5.41) into (5.39) finally gives the
following quadratic equation [Bancroft, 1985]:

(B 1,Bt)A’ +2|(B1,B ) ~1|A + (B0, B 0 =0 (5.43)

Equation (5.41) is a quadratic system, so its solution produces two roots that
correspond to two potential locations in space, only one of which is correct.
Determining which location is the correct answer, however, requires additional
information from other sources; for instance from the approximate position of the
receiver, or preferably, from extra GPS satellites. The latter method will be discussed
in the next section. We present here a simple method to check the valid solution.

5.4.3 Method using All Visible GPS Satellites

The quadratic system in Equation (5.41) yields two potential locations in space when
only four pseudo-range measurements are used. If five or more satellites are
available, then the resulting redundancy can be exploited to identify the correct
location. With extra satellites, several sets of four measurements can be formed.
Since each set will include the correct location in one of its two roots, we are able to
single out the correct location in each four-measurement set by comparing the
different location pairs. The final result is then obtained by averaging all suitable

positions.

Unfortunately, the above procedure is somewhat clumsy and inconvenient. To
expand Equation (5.39) so as to directly include more than four pseudo-range
measurements we need to increase the dimension of the matrix B and the vectors a
and t, with additional rows associated with the extra satellites. For the analytical
solution to work, however, the dimension of the system must be reduced to four, and

this can be achieved by multiplying the system by the matrix B as follows:
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BTa—BTBM[Zj+BTAr -0 (5.44)

After similar derivation steps, the solution to Equation (5.44) takes the following
form [Goad, et al., 1996]:

((B"B)"B'v,(B"B) "B T)A" + 2[<(BTB)_1BTT, (6'B)'B’a) —1}/\
+((B"B)"B"a,("B) B a) =0
(5.45)
It is noticed that the solution to Equation (5.43) incorporates all available
pseudorange measurements in a least squares sense, as the coefficients of the
guadratic equation are now minimum two-norm values, i.e., the sum of squares of
the coefficients is minimum. However, the solution is different from the usual least

squares solution given by the traditional iterative procedure which on the other hand,

generates minimum two-norm pseudo-range residuals.
5.5 Experiment Studies

5.5.1 Experiment Description

The purposes of the experimental study are threefold:
e to explore the spaceborne GPS measurement quality and test the outlier
detection algorithm;
e to validate the proposed closed-form SPP algorithm;
e to assess the accuracy of phase smoothing and validate the sliding-window

method.

In all the following experiments, three day GPS data from SAC-C (14 to16 February,
2002) was used. All the data are SA-free dual-frequency measurements. Table 5.5
gives the GPS data overview. All the results are compared to the JPL ephemrides,

which has centimetre level accuray.
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Table 5.5 SAC-C GPS data overview of day 045, 046 and 047 of 2002.

3:2:?;; Meastl;;eement Epochs | Observations | SVs <4 AVS‘)"Ide
SACC 45 (131)
(04502~04702) 10 PIPILIL, 25,860 200,138 —0.1% 7.7

5.5.2 Observation Linear Combination and Outlier Detection

Several important linear combinations describe in Section 5.2.1 were studied to

detect outliers and cycle slips.

5.5.2.1 P-code Geometry Combination for Ionospheric Delay

Theoretically, the ionospheric delay can be expressed by Ap,, =P, —F . If the

ionospheric delay derived from this expression is very large, it suggests the presence

of an outlier. Table 5.6 lists the ionospheric delay for all satellites in view. We found

most delays (98.4%) are below 5 metres, which is quite reasonable. We also find that
0.8% data has a RMS of 209840m. Without deleting these large outliers, the overall

RMS is 25057m. After deleting these 6644 measurements, we obtained an overall

RMS of 2.73m. The result suggests we should delete any measurements with larger

than 15m ionospheric delay.

Table 5.6 Statistics of ionospheric delay for all the satellites.

Percentage (number) RMS (m)
<2m 9.6% (79,335) 1.37
<5m 98.4% (813,879) 2.48
<15m 99.2% (820,876) 2.73
>15m 0.8% (6,644) 209840
All 827,520 25057

Figure 5.3 shows the ionospheric delay for SV5 and SV28. Big outliers were seen

for both satellites. These unreasonable measurements should be deleted.
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Figure 5.3 lonospheric delay for SV5 and SV28.
5.5.2.2 Melbourne-Wiibbena Combination

As discussed in Section 5.2.3, this combination eliminates the effects of the
ionosphere, geometry, clocks and the troposphere. It comes from the wide-lane
combination of both the code and phase measurements. If a discrepancy was found
during the recursive checking described in Equation (5.23) it was labelled either an
outlier or cycle slip. Figure 5.4 shows the Melbourne-Wibbena combination for SV5.
Among all of these points with larger error we can see that there are some scattered
points which indicate outliers, while the continuous outliers indicate a cycle slip.
This is a quite straightforward detection method that is good for onboard processing.
In Figure 5.4 we labelled three cycle slips and label all the other points beyond 4o,
values as outliers. Then the outliers were removed from the raw measurements. The
cycle slips can simply be fixed by the RMS difference and a low weight will be
attached to these fixed measurements in the following processing. If the most stable
situation is required just remove the cycle slip affected data as well.
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Figure 5.4 Melbourne-Wibbena combination residual of SV5.

5.5.2.3 Ionosphere-Free Linear Combination

This linear combination should consist of noise only. Though the noise is about four
times larger than that of the Melbourne-Wibbena combination, it is useful to detect
some system error neglected by other detection steps. Figure 5.5 shows the result
from SV5, we only found one outlier in segment 1V, where the far right point has a

value that exceeds 40, =5.3m.

5.5.2.4 Summary

During this experiment, several outlier detection methods were tested; Table 5.7
gives the detected outlier statistics from different methods. We found 11%
measurements have been removed, which is a high percentage for some. But we can
adjust three detection-control values: phase-link arc length, ionospheric delay
threshold, and P-code noise, to allow more measurement, to pass the detection

process.
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Figure 5.5 lonosphere-free linear combination for SV5.

Table 5.7 Outlier detection summary.

Number of outliers Percentage
Errors 2 0.0%
Short phase-link arc 2458 1.2%
Ionosphere delay 13648 6.8%
Melbourne-Wiibbena Combination 1565 0.8%
Ionosphere-free combination 57 0.0%
P-code noise check 4473 2.2%
Overall 22203 (200140) 11.1%

5.5.3 Code Measurement Quality and Residual Analysis

After the outlier detection process in previous experiments, a “clean” GPS data set
was obtained. In this section the quality of the code measurement was inspected by
means of the single point positioning results and the residuals.

5.5.3.1. Single Point Positioning Result

Both the broadcast ephemerides and IGS ephemerides were used to produce SPP

solutions using SACC flight data. Figure 5.6 illustrates the 3D position RMS error of
6.8m and 4.9m for the broadcast ephemerides and I1GS solutions, respectively. These

129



results are reasonable. Figure 5.7 gives the GDOP and satellite visibility. Figure 5.8
shows the receiver GPS clock bias derived from the SPP solution.

5.5.3.2 P-code Noise

After the system errors have been removed from the GPS measurements, the
positional accuracy is determined by the measurement noise and geometry only. The
measurement noise includes the signal noise, hardware noise and multipath effect. In
this chapter, the noise of both A and P, were inspected using the following
expression [Zhou, et al., 2003]:

PM,, = (le B )_ﬂ'l(l’lwl _le)v

PM,, =(P, ., — B, )= A, (L,,, —L,,) t=0,1,2... (5.46)
Here A,= 0.1903 metres for the frequency of f, (1575.42 MHz), and A, = 0.2442
metres for the frequency of f, (1227.60 MHz). PM,, and PM,, mainly contain
receiver noise and multipath errors. The standard deviations of the observations P,

and P, are given as:

oM, (5.47)

There are 28 satellites in view over these three days. Table 5.8 gives the statistics of
PM,and PM,from a set of 24h SAC-C data on day 045~047, 2002. Figure 5.9
shows that the RMS is 39.5cm and 32.8cm for P, and P,, respectively. Figure 5.10

illustrates the relationship between measurement noise and elevation angle. We
found larger noise when the elevation angle was lower than 25 degree. The overall
RMS value is 23.5cm when measurements were only collected from elevations

higher than 25 degree, which is 16cm less than that of all data considered.

Table 5.8 Overall P-code noise statistics for all satellites.

<=0.2m <=0.5m <=1.0m <=2.0m <=5.0m >5.0m
PM 64.1% 86.9% 96.3% 99.7% 100% 0
1 9.7cm 18.7cm 28.2cm 37.1cm 39.5cm
PM 64.9% 90.1% 98.2% 99.9% 100% 0
2 9.9cm 19.1cm 26.9cm 31.4cm 32.8cm

130



a0

Broadcast Ephef‘neredes : : g 3 C

o
E
o
)
[=]
'-'an 0 500 1000 1500 2000 2500 3000 3500 4000 4500
1=
=
i
@ a0 | T T T T T
w T
© '1GS Ephemeredes : *
a koo R MS = 49m ........................................... 4
™
30_ ............................................................................ ’ .................................................. —

ZSDD 3000 3500 4000 4500

Time {minutes)

Figure 5.6 Single Point Positioning (SPP) results from SAC-C data of three days

(04502 ~ 04702).
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Figure 5.9 Overall P-code noise for three days (04502 ~04702).
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5.5.3.3 Residuals

The measurement residuals were calculated using the precise SACC orbits, which
has centimetre level accuracy. If the GPS ephemerides are known at the centimetre
level as well the residuals should represent the GPS measurement residual and some
small system errors (coordinate transformation, relativistic effects, etc). Figure 5.11
shows the measurement residuals using the broadcast ephemerides and IGS
ephemerides, respectively. We found the RMS using IGS result to be 2.67m, and for
broadcast ephemerides solution it is 3.66m. Even with the 1GS solution the value of
2.67m is still high considering that the RMS of P-code noise is around 30cm
(derived in the previous section). After we account for the ionosphere-free
differential noise and some un-modelled system errors, around a 1 ~ 1.5 metre
discrepancy can be attributed to the GPS clock bias. Although the IGS final solution
has < 0.1 ns [I/GS, 2004] clock accuracy, the 5 minute interval can still introduce an
interpolation error. For the broadcast ephemerides the standard deviation currently is
2m for GPS orbits and 7 ns for GPS clock [/GS, 2004]. So a 3.66m RMS error seems
reasonable. Furthermore, the relativistic effect and antenna offset in GPS

measurements have been inspected. Figure 5.12 and Figure 5.13 give the results.
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5.5.4 SPP Result Using Closed-form Formulation

The closed-form single point positioning algorithm was also tested. The
measurements were treated in the normal manner. Figure 5.14 shows the detailed
results. It is found that a 3D positional error of better than 100 m can be achieved
over 83.1 % of the measurement epochs. The RMS value is around 37m, which is
quite reasonable. In only 0.7 % of the cases did the 3D positional error exceed 10
kilometres error. Of course another condition of this method is there must be at least
four satellites visible. The results suggest that the closed-form algorithm is a fast and
reliable one for initialization purposes.
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Figure 5.14 Closed-form SPP result for three days (04502 ~ 04702).

5.5.5 Sliding-window Phase Smoothing

5.5.5.1 Phase Connection Arc Length

As described in Section 5.3 carrier-phase smoothing requires continuous code and
phase measurements. The smoothing quality depends on the phase-connected arc
length; a better result can be obtained with a longer phase connection arc. As an
outlier detection step, we normally delete the whole arc data where the arc length is
less than 2 minutes and the number of data points is less than 10. After this outlier
deletion process, the phase-connected arc length was calculated for all satellites in
view. The result is presented in Figure 5.15. It is observed that 85 % of arcs are

longer than 20 minutes; and some 8% are shorter than 5 minutes.
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Figure 5.15 Phase connection arc length for all satellites in view.

5.5.5.2 Phase-smoothing with Different Arc Lengths

Carrier-phase smoothing results using different arc lengths are presented here. The
arcs are: 5 minutes, 10 minutes, 15 minutes and 20 minutes, respectively. We only
used the broadcast ephemerides and the results were compared with the non-
smoothed SPP solution. Figure 15.16 gives the 3D SPP positioning error with a RMS
value. Table 5.9 gives the P-code noise comparison between the smoothing value

and raw value.
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Table 5.9 Overall P, /P, noise statistics after phase smoothing.

Scheme <=0.2m <=0.5m <=1.0m <=2.0m <=5.0m >5.0m

P 64.1% 86.9% 96.3% 99.7% 100% 0

Raw 1 9.7cm 18.7cm 28.2cm 37.1cm 39.5cm
P 64.9% 90.1% 98.2% 99.9% 100% 0

2 9.9cm 19.1cm 26.9cm 31.4cm 32.8cm
P 97.7% 98.2% 98.9% 99.6% 100% 0

Smin 1 0.7cm 2.7cm 6.5cm 14.3cm 21.3cm
P 95.8% 97.0% 98.1% 99.1% 100% 0

2 1.1cm 4.1cm 8.9cm 16.9cm 35.3cm
P 99.0% 99.2% 99.4% 99.7% 100% 0

10min 1 0.4cm 1.4cm 3.8cm 9.9cm 16.5cm
P2 97.6% 98.4% 99.0% 99.4% 100% 0

0.9cm 3.2cm 6.7cm 11.4cm 28.1cm
P 99.4% 99.5% 99.6% 99.8% 100% 0

5min 1 0.2cm 1.0cm 2.6cm 7.4cm 12.8cm
P2 98.29% 98.8% 99.3% 99.7% 100% 0

0.8cm 2.9cm 6.0cm 10.0cm 22.1cm
P 99.6% 99.7% 99.7% 99.9% 100% 0

20min 1 0.2cm 0.8cm 2.3cm 6.1cm 10.6cm
P2 99.6% 99.6% 99.7% 99.8% 100% 0

0.1cm 0.6cm 1.8cm 5.1cm 17.1cm

We found the 20 minutes smoothing only improved the SPP accuracy about 60
centimetres, which is quite small compared to the improvement in the measurement
noise level. There are two possible reasons for this. First, the least squares process
with an average of 7 visible GPS satellites absorbs much of the measurement noise.
Second, the ionosphere-free combination and the between satellites difference
introduce additional process noise which reduces the advantage of smoothing. We

plot the £/ P, code noise with respect to elevation angle in Figure 5.17 dramatic

improvement can be seen after the 20 minutes smoothing.
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Figure 5.17 B/ P, code noise with respect to elevation angle after 20 minutes phase

smoothing for SV5.
5.5.5.3 Sliding-window Smoothing

Sliding-window smoothing sequentially processes 10 to 15 minutes data, and
generates a smoothed measurement every 5 minutes. From previous experiment
results we found that the best smoothing arc length is 10 to 20 minutes. Table 5.10
gives the different window sizes and the storage requirement. For example, if the
short-arc is 2 hours, and we choose a window size of 5 minutes, we can get 24 epoch
measurements, and the measurement storage is around 192 bytes. The sliding-
window method can reduce the computing time and storage requirement while

retaining measurement accuracy.

The following test evaluated the sliding-window smoothing performance by
comparing the SPP solution accuracy. Figure 5.18 illustrates the SPP 3D RMS error
and computing time. Nine configurations were used; the m x n means the smoothing

arc
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is m minutes and window size is n minutes. It was observed that the computing time
was reduced a little bit compared to processing all the available data and the quality

of the measurements remained at the same level.

Table 5.10 Measurements and storage requirements for short-arc orbit determination

using sliding-window phase smoothing.

Measurement number and 30 minutes 1 hour 2 hours
Storage (bytes)
Every 1 minute 30/240 60 /480 120/960
Every 2 minutes 15/120 30/240 60 /480
Every 5 minutes 6/48 12/96 241192

RMS Error (m)
w
!
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Figure 5.18 Comparison of SPP results and computational burden with different
sliding-window smoothing strategies.

5.6 Summary

In this chapter, GPS code measurements and their error source have been described,
and different outlier detection methods have been discussed. A sliding-window
carrier phase smoothing algorithm has been validated through extensive experiments.
This method can reduce the measurement storage and retain the carrier-phase
smoothing precision. Furthermore, a closed-form single point position algorithm was
also validated. It can be used to provide initial position with tens of metres accuracy
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without any a priori information. Together, these techniques facilitate high accuracy

onboard GPS processing. In summary, we have reached the following conclusions:

An outlier detection scheme was developed, consisting of separate modules,
each requireing little computing resource. It can also detect cycle slip and fix
them using a simple method and lower weight is given to these required
measurements to prevent performance degrading.

The closed-form SPP algorithm generates positioning solution with tens of
metres error. This accuracy can be achieved for 83% of measurements.
Furthermore, the error is smaller than 10km for 99% of measurements, which
is still a good initial estimate for the subsequent orbit filtering process.

The carrier-phase smoothing reduces the code noise from 39.5cm and 32.8cm
down to 17.1cm and 10.6cm, for £, and P, respectively.

We found that best SPP result was achieved with 10 ~ 20 minutes smoothing.
For the sliding-window smoothing the results are basically the same with
different window sizes. The 5 minute window size with 10 ~ 20 minutes

smoothing is a good choice for onboard processing.
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Chapter 6

Short-arc Orbit Determination

This chapter deals with orbit estimation from the measurements. For stability and
accuracy consideration, and based on previous efforts toward the simplified orbital
model and GPS measurement model, a short-arc filter is proposed in this chapter. To
address both the accuracy and computational burden challenge, the filter has the
following characteristics:

e It is a weighted least squares batch filter. A parametre regularization
technique is also used to minimize the singularity effect arising from poor
satellite geometry and measurement distribution.

e Using the orbit model simplification strategy proposed in Chapter 3, but with
the gravity approximation method proposed in Chapter 4 instead. These
simplifications are especially suitable for onboard data processing or real
time orbit computation.

e Using the sliding-window carrier-phase smoothing filter to refine GPS code
measurements, and reduce the number of data points.

e Achieving improved orbit solutions when the uncertainty of GPS
observations is higher than the modelling errors, and correction for dynamic
model biases when the GPS observations are more accurate.

6.1 Weighted Least Squares Filter

6.1.1 Least Squares Problem

The basic idea of least squares estimation as applied to orbit determination is to find
the trajectory and the model parametres for which the square of the difference
between the modelled observations and the actual measurements becomes as small
as possible or, in other words, a trajectory which best fits the observations in a least
squares of the residuals sense (Figure 6.1). In reality, since different measurements
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have different units and reliability, a weighting factor is applied to each residual and
it is the square of the weighted residuals that is minimized. In order to arrive at a
mathematical formulation of this principle let:

x, =(r,v,.p.q) (6.1)
denote a time-dependent, m-dimensional vector comprising the satellite’s position

r,and velocity v,as well as the free parametres p and qthat affect the force and
measurement model. The time evolution of x, may be described by an ordinary
differential equation of the form

x= f(s,x)  withan initial value at epoch 7,: %, =X, (6.2)
Furthermore, let:

Z=(z,,,z,) (6.3)
denote an n-dimensional vector of measurements taken at times ¢,...,¢z, . The
observations are described by:

z, =gl.(t‘ X )+£i =hl.(tl.,x0)+£l. (6.4)

iy
or:
z=h(x,)+eg, (6.5)
Here g, denotes the model value of the i th observation as a function of time ¢, and
the instantaneous state x, whereas h, denotes the same value as a function of the
state x, at the reference epochz,. The quantities g, account for the differences

between actual and model observations due to measurement errors, which are

usually assumed to be randomly distributed with zero mean value.

The least squares orbit determination problem may now be defined as finding the

state x, which minimize the loss function:

J(xo)=p"p=(z-h(x,)) (z-h(x,)) (6.6)

(i.e. the squared sum of the residuals p,) for a given set of measurements z. It is

noted that the given formulation of the loss function requires all measurements to be
of equal type and quality. This assumption simplifies the subsequent presentation but

will later be dropped to arrive at a completely general formulation. In order to avoid
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a non-unique determination of x, , it is further assumed that the number of

observations » is at least equal to the number of unknown m.

Estimated orbit Observed orbit

Nominal orbit

Q O O ® e |
fy t L,
e GPS sample point @ State update time epoch

Figure 6.1 Concept of least squares orbit estimation.
6.1.2 Linearization and Normal Equation

The practical solution of the least squares orbit determination problem is

complicated due to the fact that h(xo) is a highly non-linear function of the unknown
vectorx,, which makes it difficult or impossible to locate the minimum of the loss
function without additional information. As mentioned above, an approximate value
x, of the actual epoch state is, however, often known, which may be used to simplify

the least squares problem considerably.

Linearizing all quantities around a reference state x,,, which is initially given by x,,

the residual vector is approximately given by:
ch (x

p:z—h(xo)zz—h(io)——

o — X, )=Az—HAX, (6.7)
0x,

Here Ax,=x,-X,and Az=z-h(X,) denote the difference between the actual

observations and the observations predicted from the reference trajectory.

Furthermore, the partial derivatives:

= o) ©9)
0x,

Xg=Xg
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gives the relationship of the modelled observations with respect to the state vector at

the reference epoch ¢#,. Equation (6.7) provides a prediction of the measurement
residual after applying a correction Ax, to the reference state and re-computing the

models observation h.

The orbit determination problem is now reduced to the linear least squares problem
of finding Ax,such that:

J(Ax,)=(Az-HAx, )" (Az-HAx,) (6.9)
i.e., the predicted loss function after applying a correction Ax,becomes a minimum.
If the Jacobian has full rank m, i.e., if the columns of H are linearly independent, this
minimum is uniquely determined by the condition that the partial derivatives of J
with respect to Ax, vanish:

8(Az—HAx, ) (Az—HAx, )
OAX,

=0 (6.10)

Axy=AX,
Using the relation

da'b —aTa—b+bT oa

oc oc 5

(6.11)

to compute the derivatives of p”p, the general solution of the linear least squares
problem may be written as

A%, = (H'H) (A Az) (6.12)
after a proper rearrangement. The matrix H'H is an m-dimensional symmetric
square matrix, which is also known as the normal equations matrix. Since H was

assumed to have full rank, the inverse of H”H exists, even though it need not

actually be computed. Instead Ax, may be obtained by solving the m-dimensional
normal equations:

(H'H)AX, = (H" Az) (6.13)
using standard techniques for positive definite linear systems of equations (e.g.
Cholesky’s algorithm).

Due to the non-linearity of H the simplified loss function differs slightly from the

rigorous one and the value of x, =X, +Ax, determined so far is not yet the exact
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solution of the orbit determination problem. It may, however, be further improved by

substituting it for the reference value x,and repeating the same procedure. Based on
this idea the non-linear problem can be solved by iteration:

xi" =xg+(HH ] H (2 -nxg) (614
which is started from x) =X, and continued until the relative change of the loss

function is smaller than a prescribed tolerance for successive approximations. The
Jacobian:

oh(x,)
0x,

H' =

(6.15)

should be updated in each iteration to ensure an optimum convergence, but may also
be replaced by the constant value H°. Even though the number of iterations
increases in this case, the total computational effort can often be reduced, due to the

large amount of work that is otherwise required for the integration of the state

transition matrix.
6.1.3 Observation Weight

The algorithm implies that that all observations are treated equally, even though the
observation vector z is generally composed of different measurement types. The
accuracy of each measurement type may, however, easily be accounted for by

weighting all observations with the inverse of the mean measurement error o, , i.e. by

replacing the residuals p, with the normalized residuals:

b= p = (-, (x,) (6.16)

1 1

Here o, should consider the total expected error in the measurement due to both

random noise and systematic errors (e.g. refraction). As a result the basic least-
squares Equation (6.12) remains essentially unchanged except that H and Az are
replaced by the modified values:

H =SH and AZ = SAz (6.17)

Here S is a square diagonal matrix:
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S:diag(ofl,...,a;l): (6.18)

0 ol
which divides the i th row of a matrix or vector by o, upon multiplication from the

left. Alternatively the solution of the weighted least squares problem may be written
as

AR, = (H"WH) " (H"WAz) (6.19)
using the weight matrix:

W =82 = diag(0,?,....0,?) (6.20)
Both representations are equally well suited to handling uncorrelated measurement

errors, which are fully described by the corresponding values ;. The weight matrix

may, however, also be used for correlated measurement errors, in which case W

becomes a non-diagonal matrix.

As alternatives to constant weighting normally used in GPS analysis, there are some
other possible methods that may be used [Vermeer, 1997; Teunissen, et al., 1999;
Collins & Langley, 1999; Hartinger & Brunner, 1999]:

e Weighting as a cosecant function of the satellite elevation angle [Vermeer,
1997; Collins & Langly, 1999]. This is because the amount of signal noise
increases towards the horizon, similar to the tropospheric error, which has a
cosecant shape, according to various models of the tropospheric mapping
function, such as Marini, Chao, Davis and Herring mapping functions.

e Weighting as square of a cosecant function of the satellite elevation angle
[Vermeer, 1997; Hartinger & Brunner, 1999]. This is from the fact that GPS
residuals reveal a more swiftly increasing noise level for low elevation angles.

e Exponential weighting schemes that weight corresponding observations
observed from near the horizon very much lower [Euler, 1991].

e Weighting that reflects receiver generated signal-to-noise ratio (SNR) values
[Collins & Langley, 1999; Hartinger & Brunner, 1999]. Normally, SNR

represents the carrier-to-noise-power-density ratio (C/N,), which varies

with the elevation of the arriving signal. Langley [1997] derived phase

variance (m) using C/ N, (dB-Hz) values as follows:
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O_Li — B(;’_;'z-)zloo.lC/No ’ l: 1’2 (621)

where B is the carrier tracking loop bandwidth (Hz). It should be noted that some

receiver manufacturers do not provide either SNR or C/ N, .

Hartinger and Brunner [1999] used the SIGMA- ¢ model where the phase variances

are computed using C/ N, values and thus observation weight directly echoes signal

quality. Their experimental results show that baseline RMS of the SIGMA- & model
is much less than that in the case of equal weighting, especially at low elevation

cutoff angle.

Collins and Langley [1999] reported that, in the presence of multipath, the cosecant
and SNR weighting schemes yield a significant improvement over the equal-
weighting scheme. Moreover, according to the scaling effect of the a posteriori

variance factor, the cosecant and SNR schemes are almost numerically equivalent.

The amount of observation noise increases and can indicate the presence of
multipath, which mostly occurs in signals from low satellite elevation angles. It
should be more appropriate to apply a step function using a combination of uniform
weight for high elevation angle observation and lower weight at low elevation angle.
Deweighting observations at high elevation angles will lose valuable information.

The step function variance may be given as:

2 le >
oPeley={ , °, ¢ (6.22)
o°cos’(ele) ele<a
or
2 le >
o (ele) = 0'2 COSZ(ele) ele>a (6.23)
o cos(ele) ele<a

where « is the elevation threshold angle.

6.1.4 Numerical Problems

As is evident from the mathematical formulation of the least squares problem, the

number of observations must at least be equal to the number of unknowns, but
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should be considerably larger to reduce the influence of individual measurement
errors. A large number of observations may still, however, be insufficient if the
tracking geometry and distribution do not provide enough information on all

estimation parametres. The direct solution of the normal equations:
(H"H)AR, = H Az (6.24)
will then give rise to numerical difficulties, even if the normal equation matrix is not

exactly singular.

To avoid this stability problem many numerical methods have been formulated, such
as QR factorization, UDU factorization and singular value decomposition (SVD).
They are all effective for stabilizing the least square filter, but the computational cost
to introduce such methods for onboard implementation is also high.

We propose a so-called regularization parametreization method combined with the
LU decomposition method. To be able to solve the ill-conditioned system, we

minimize the function:

J,(A%,)=(Az-HAR,) (Az—HAX, )+ a(LAX,)" (LAX,) (6.25)
over all Ax,in a compact set satisfying

|Az—HAX | < & (6.26)
Here, the o is some fixed positive number, the so-called regularization parametre,
and L is some linear operator (e.g. LAX, = Ax, or LAx, = A'x,). Under certain mild
conditions, the problem Equation (6.23) has a unique solution, denoted by A_x, .
Moreover, A_x, will converge to the solution of Equation (6.22) as « >0,

provided that ¢* — 0no less rapidly than « . The linear operator L is often chosen

in such a way that it will help to suppress wild oscillations in functions Ax, which

satisfy Equation (6.24). However, this effect should not be too strong so that all

oscillations in Ax, are damped out. Using a variational argument, the solution of

Equation (6.23) can be shown to be the solution of:

(H'H +aL'L)AX, = H'Az (6.27)
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where H' and L' are the operators that are conjugate to H and L respectively.

Equation (6.27) is a nxn linear system. It can be well solved using a LU

decomposition method.

6.1.5 Comparison of Least Square Batch Filter and Sequential Filter

As has been pointed out in the introduction, the estimation techniques commonly

employed for orbit determination purposes are closely related to each other and a

smooth transition is possible from the batch least squares method to the various

forms of Kalman filter. Each type of estimator has inherent advantages and

disadvantages and a trade-off is usually required to select the most suitable

estimation method for a particular application:

Measurement processing and state correction: The classic batch least
squares method computes the epoch state estimate after processing the full
set of observations. If improved epoch state estimates are required after each
measurement, a formulation involving Givens rotations or the recursive least
squares method may be used. The Kalman filter in contrast processes a single
scalar or vector measurement at a time and yields sequential state estimates at
the measurement times.

Treatment of non-linearities: Due to the non-linear relation between the
epoch state vector and the modelled measurements, multiple iterations are
required in the least squares method to compute a state estimate that actually
minimizes the loss function. Using the extended Kalman filter these iterations
may in general be avoided, since the reference solution is changed with each
observation. Problems may more arise. However, in the case of large
deviations between the a priori state and the actual state as well as poor
management of the covariance;

Computer implementation: When using a Kalman filter for orbit
determination there is no need to store measurements from previous time
steps. Storage requirements are therefore smaller than for the least squares
method, in which various data have to be stored for subsequent iterations.
Numerical stability: Both filters and least squares estimators may be subject
to numerical problems in the case of bad observability as indicated by an ill-
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conditioned normal equation matrix or covariance matrix. However,
numerically stable algorithms employing different types of matrix
factorizations are available; The increase in computing effort and storage
requirement is generally negligible and the stabilized algorithms can
therefore be recommended for most applications.

e Divergence: A divergence of the least squares solution from one iteration to
the next may occur in rare instances of bad observability, a bad initial state
estimate or high level of non-linearities. All of these could also cause a
Kalman filter to diverge. In addition, divergence of the state estimate from
the true solution is likely to occur in a Kalman filter when the covariance
becomes small and the filter becomes insensitive to new observations.
Process noise may be incorporated into the filter to avoid divergence, but
heuristic assumptions and simulations are often required to determine the
appropriate noise model for a particular situation, unless a physical
description of the process noise density matrix is available.

e Process noise: A unique feature of the Kalman filter as compared to the least
squares method is the incorporation of process noise into the estimation
process. Aside from being required to avoid filter divergence problems, it
may be employed to generate more realistic covariance predictions in the
presence of unmodelled accelerations. Furthermore, it may be used to reduce
the influence of past observations on the state estimate as compared to more
recent observations.

e Influence of bad data points: The batch estimator and the recursive least
squares method process all data points using a common reference trajectory.
This facilitates the handling of bad data points, which may be recognized by
residuals that are considerably larger than the average value. In general the
least squares technique is therefore more robust and easier to handle than the
Kalman filter. The latter requires a careful balance between a priori
covariance, measurement weighting and process noise to allow a rejection of

bad data points.

Traditional applications in which Kalman filters are preferred to batch least-squares

techniques include the onboard navigation of manned or unmanned spacecraft
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requiring a real time state estimate [Battin & Levine, 1970]. Filtering techniques are,
furthermore, used in the field of interplanetary orbit determination and navigation.
By incorporating appropriate process noise, unmodelled statistical accelerations due
to attitude thruster activities or radiation pressure modelling simplifications may be
accounted for, which provides more realistic estimates of the injection error near the
target planet [Campbell, et al., 1983]. The batch least squares method on the other
hand is commonly employed for off-line orbit determination of Earth-bound
satellites [Long, et al., 1989; Soop, 1983] and for the estimation of geodetic
parametres from satellite orbits [McCarthy, et al., 1993]. A comparison indicating a
good agreement of orbit determination results from precision batch least squares and
sequential estimation programs (GTDS, RTOD/E) for satellites tracked by the
Tracking Data and Relay Satellite System (TDRSS) has recently been established by
a study conducted on behalf of the Goddard Space Flight Centre [Oza, et al., 1992].
Similar conclusions have been obtained by Halain et al. (1998) for single and multi-

station tracking of geostationary satellites.

6.2 Covariance Analysis for a Batch Filter

6.2.1 Dynamical Orbit Error for a LEO

The typical accuracy of instantaneous point positioning is 5 ~ 15 metres without the
SA effect; the major error contributors are GPS orbit and clock error and pseudo-
range measurement noise (including multipath). A typical dynamical filter, such as a
least squares filter, reduces the position error by smoothing measurement error
against an orbit model over the fitting arc. Metre-level random errors may readily be
reduced to decimetres or below. At the same time, key systematic errors such as GPS
orbits, satellite clocks and multipath may be largely uncorrelated with the low orbiter

dynamics and, therefore, attenuated in the solution.

But the improvement from the dynamical filtering is reduced when the altitude is
low, for instance, below 800km. As the filter smooth measurement error, it
introduces dynamic model error and process error. For a LEO satellite the orbit

modelling is much more complicated due to the following effects: high order
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harmonic items of Earth gravity; Earth solid tide; and surface forces from
atmospheric drag. Model adjustments made during the dynamic filtering process
may offer only partial improvement. Any remaining model errors will appear
directly in the orbit solution. Gravity and drag model errors are often dominant, and
both increase rapidly as the satellite altitude decreased. Thus, accurate dynamic orbit
estimation becomes problematical at low altitudes. For example, the motion of
Lageos, a dense inert sphere at about 6000km altitude, can be modelled to within a
few centimetrees over periods of weeks; the motion of T/P, a larger vehicle at
1336km attitude, to about 10cm over 10 days; the motion of SAC-C, at 800km
attitude, to one or two metres over one day; and the motion of the CHAMP, at
300~400km, to roughly 10m over an orbit revolution. Under such circumstances,
kinematic information is important to correct the orbital model error. Table 6.1
compares the orbit integration error for different arcs for different missions: T/P,
SAC-C and CHAMP. The models used are the same for these missions except

different drag parametres.

Table 6.1 Un-modelled dynamical error for different arc against different missions.

15 minutes 1 hour 2 hours 6 hours 12 hours 1 day

T/P 3cm 19cm 63cm im 2m 13m
SAC-C 13cm 74cm 8m 59m 248m 946m
CHAMP 30cm 12m 46m 517m 2067m 8102m

Dynamic model errors often reveal themselves in the post-fit residuals. That is, they
create systematic discrepancies between the actual measurements and theoretical
measurements derived from the modelled trajectory. Imagine a case in which a force
varies randomly from one time step to the next and is, therefore, unpredictable, but
can be observed in the post-fit residuals. A number of forces (drag, gravity

anomalies) can appear to behave in this way.

In a typical Kalman filter, to observe un-modelled motion, the filter models the time-
varying satellite force as the sum of a deterministic component (the standard
dynamic model) and a stochastic component, which is the process noise model. This
is a way of telling the filter that the state transition information in @ is incomplete—
that there is another component that the filter cannot predict, but that it can try to
observe in the data and estimate at each time step. This means that at each time step,
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in addition to applying the standard dynamic updates, the filter will examine the
discrepancy between the dynamic state estimate and the apparent state as indicated
geometrically by the measurements. From that discrepancy it will estimate a local
correction to the dynamical model, valid only over the current update. When added
to the dynamic model, that correction will reduce the disagreement between the
observations and the solution trajectory at this epoch. As it proceeds through the data
the filter will generate a sequence of local force model corrections, one at each
update time, bringing the solution trajectory into better agreement with observations.
But that may be undesirable when bad measurements are present, after only one bad
measurement is enough with conventional (sparse) tracking data, as the data acquired
at any one time are often weak and insufficient by themselves to determine position.
A relaxed constraint on process noise estimate may result in a large and erroneous
adjustment to the state, or may cause the solution to fail. This is one reason why a

Kalman filter is not as stable as a least-squares filter.

Starting from another point of view, the model error problem can be avoided to some
extent if only short-arc data are processed in a least squares filter, because the model

error propagation is not very serious within a 1 ~ 2 hour arc.

6.2.2 Covariance Analysis of the Batch Filter Result for LEO

There are two parts to the GPS observation equation: random measurement noise and
system un-modelled error. Both affect the performance of the batch filter.

Normally the measurement noise vector v is assumed to be white noise with zero
mean value, with the standard normal distribution. Thus the error covariance related
to the estimation X depends on the number of observation number. The more data in
a batch filter, the better the noise is reduced. Of course, things are not that simple in
real situations due to data correlation, the data quality distribution and system model
error, all of which affect the final filtering result. If a carrier-phase smoothing filter is
carried out for the P-code data, the original P-code noise can change from metres

level to decimetre level. This will ease the demand for large number of observation.

155



On the other hand, the dynamic model error increases with longer filtering arc. These
errors come from both the dynamic model error and the integrator truncation
accumulation error. The behaviour of these system errors cannot be modelled as
stochastic ones, thus they will not be alleviated using more measurements; they only
depend on the accuracy of the measurements. One can model the system in a high-
parametreized procedure, as in GPISY, where more than 40 parametres are used in
the dynamic model. In this manner, a longer arc is preferred because the full strength
of dynamic filtering can be gained. Obviously, this strategy is not suitable for

onboard processes.

Another type of system error comes from the GPS measurement modelling.
Typically, GPS ephemerides and clock error, ionospheric delay and receiver clock
bias are the dominant error sources. Nowadays, the broadcast ephemerides and clock
accuracy are much better than before. By comparing the broadcast ephemerides with
the IGS result we can see that there is normally about a 1~2m discrepancy between
them. One study [Bertiger & Yunk, 1990] showed that errors in the GPS orbits were
attenuated by roughly a factor of two in the dynamic solution. That is, 1 ~ 2 metres
GPS orbit error resulted in errors of 0.5 ~ 1 metre in the solution orbit. For other
types of error sources, by forming the ionosphere-free combination and single-
difference between different satellites, the residual should be at the decimetre level.

In all, the measurement modelling error residual typically will be around 1 metre.

6.2.3 Parametreization

Parametreization is an important issue when only small set of measurements is used
in the filter. In orbit determination, in addition to the six state vector variables, a set
of orbital or measurement model parametres are estimated during the filtering
process. However, in comparison with the state vector, the orbital parametre is much
more sensitive to bad measurements. If not handled well the solution will depart
from the true trajectory. The least squares filter always tries to minimize the sum of
the squares of the residuals. If the measurements are corrupted or poorly distributed,
more weight will be put on the parametre part in the filtering process because the
parametres are more sensitive, thus making this parametre take more responsibility

than it should. Usually this results in a solution that is far beyond the dynamical
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boundary; of course sometimes the solution is still accurate, but the revised dynamic
model is only valid for the current batch of data and is definitely not suitable for the
next batch or for orbit prediction.

Another problem is the correlation between parametres if more than one orbital
parametre is estimated. In the filter an assumption is made that all the parametres
inependent, thus resulting in a diagonal state transition matrix. However, in reality
some parametres are correlated, such as the drag and solar pressure coefficients. It is
very hard to give apriori covariance information to these parametres. Some biases

will be introduced by the parametre estimation.

From this consideration, and based on LEO dynamic model characteristics, a set of
parametreization schemes was carefully selected, as indicated in Table 6.2. The table
only lists some suggestions based on our experiment and data set selection. Actually
this setting should be mission specific, for example, only solar pressure parametre is
enough for T/P. For FedSat, though it is on a 780km altitude, the drag coefficient is

not necessary because of the small and regular shape of the satellite.

Table 6.2 Parametreization schemes for LEO short-arc filter.

Scheme Parametres Characteristics

Most stable, suitable for extreme short-arc, like

I 6 state vector only -
10~15 minutes.
Sensitive to errors and high correlation to the

11 I + drag coefficient velocity estimation, but this scheme is suitable for
a typical LEO mission.

I I + drag + solar Account for all the along track model error, high

pressure correction accuracy but unstable.

Depending on different situations, two short-arc strategies are considered in this
research: discrete short-arc filter and sliding-window short-arc. The details are

described below.

157



6.3 Short-arc Least Square Filter

6.3.1 Introduction

From previous analyses, if precise measurements are available a short-arc filtering is
preferred for onboard orbit determination. As its name implies, the short-arc filter is
a least squares estimator using a small set of GPS measurements, and it processes the
data batch by batch in a forward direction. The arc length depends on different
requirements: it can be from 15 minutes to 2 hours, or longer. The basic concept of
the short-arc filter is illustrated in Figure 6.2.

Batch

Measurem
ents ga

GPS Navigation solutio

/ \
Epoch-State Nominal
correction orbit

Figure 6.2 Concept of short-arc orbit determination.

6.3.2 Discrete Short-arc Techniques

The basic short-arc filter processes every single batch separately, the measurements
are discarded after the process, and no relation exists between the adjacent batches.
That is, the orbit solution is available only after all the measurements in this batch
are collected. This results in a time latency from 15 minutes to 2 hours. Obviously it
is not an optimal strategy for onboard usage. However, sometimes this is the only
feasible choice because no continuous GPS measurements are available. For many
micro-satellites, due to the power or computer capacity limit, the GPS can only
operate a short time for every one or two orbits. With FedSat, for example, only 15
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minute GPS data is available for every orbit revolution of about 100 minutes in
length. Using the discrete filter a satisfied solution can still be obtained for these

missions.

6.3.3 Sliding-window Short-arc Techniques

If continuous (for at least several hours) GPS measurements are available onboard, a
more effective short-arc filter can be used. Instead of collecting the data batch-by-
batch, the sliding-window filter only updates several minutes of the measurements,
and processes the new data together with the old data. In this way, the processing
will step forward every several minutes but still process the whole set of data. Figure
6.3 illustrates this concept. The update depends on the short-arc length, which
typically can be from 5 minutes to 30 minutes. In this way the orbit solution will be
available in several minutes, which is suitable for onboard real time or near-real time

applications.

[ Short-arc process batches ]

[ Measurement updates ]

Figure 6.3 Concept of sliding-window short-arc filter.

Another advantage of this method is that it can decrease the onboard CPU time and

memory usage for the following three reasons:

e Measurements from the last batch are used in the new batch, and some
calculation results can be stored for current usage, such as carrier-phase
smoothing results, GPS broadcast ephemerides transformed to the ECI
coordinate system, and GPS measurement model corrections. These results
can be used for the next few batches, and this will greatly relieve
computional burden because only new measurements need to be processed in

every batch.
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The state vector solution in the ECI coordinate frame from the last batch can
be also stored for following batch usage. It is used as the nominal orbit input
to the new batch, and only the nominal orbit for the updated arc is calculated.
Generally, the update arc is only about several minutes in length and the
computional burden is minimized. However, this is only valid for the first
iteration of the least squares filter because the initial state vector and
parametres have been corrected after the first iteration, and a new nominal
orbit must be generated based on this new information. That means the full
arc orbit integration is needed from second iteration. On the other hand,
because the filtering result of the last batch greatly benefits the current one by
providing the precise nominal orbit and corrected parametres information,

this results in fewer iterations and a more stable solution.

The state transition matrix can be treated the same way as the nominal orbit,
that is, the first calculation of the state transition information is omitted. We
know this will relieve the calculation burden because the solving of second-
order variational equations is a time-consuming job. However, unlike the
nominal orbit, the previous state transition matrix needs to be mapped to the
current initial epoch before it can be applied to the current calculation (See

Figure 6.4). The last batch begins from ¢, to ¢,, all the partials are calculated

with respect to epoch #,. New updates begin from ¢, to ¢, , and the new

partials are related to epoch¢, . Because of the sliding-window the data from
t, to ¢, is discarded, and the partials from ¢, to ¢, need to be mapped to 7,
instead of 7, . In this way a new estimation will made at 7, . The state

equation for the last batch can be written regarding transition matrix ®,, as:

X, =@, X,
X, =®,,X, = (I)_lk,OXk = Xo =
X, =®,X,
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Figure 6.4 State transition matrix mapping in sliding-window short-arc filter.

The new state transition matrix is stored with other data at every batch. We can see
that the first iteration in the filter is really fast due to most calculation having already
been done in the previous batch. Only data from new updates are calculated. In most
cases, after the first iteration with precise filtering information from previous data,
the convergence speed is fast, a normally one or two more iterations is enough.
Based on the previous discussion, a sliding-window filter is an optimum choice for

onboard processing (more experimental results will be presented in the next section).

Furthermore, we observed distinct edge effects from previous short-arc results,
especially for the shorter arcs. This is because the whole integration arc is considered
equally in the least squares filter, but the orbital model error grows with time, and
best result is around the middle of the arc. To circumvent this effect we use a
different method in this test to get remove the solution either side of the arc.

Obviously we have to use overlapping data to generate a continuous solution.
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6.4 Experiment Results

6.4.1 Long-arc OD

For comparison, best filtering results are presented here using one day SACC GPS

data. A full orbital model and IGS solution was used. To compare the result with the

following short-arc ones we did not use high parametreization schemes, only two

orbital parametres were estimated. Table 6.3 summarizes the OD data processing

strategies. Figure 6.6 shows the position and velocity error compared to JPL precise

solution. It can be seen that a 3D positional accuracy of 80 ¢m was achieved, while

the 3D velocity error is 2 mm/s. The result is quite reasonable because only code

measurements were used. All the results below were compared against JPL

ephemerides, which have centimetre level accuracy.

Table 6.3 Long-arc OD data processing strategies.

Orbit force modelling

Earth Gravity Model JGM 3, 70x70

Third body gravity Sun & moon, all planets except Pluto
Planet ephemerides JPL DE405

Solar pressure Direct effect

Atmospheric density model MSIS 86

Pression / Nutation IAU1976 / AU 1980 (with corrections)
Polar motion IERS bulletin B

GPS Data Processing modelling

P code noise threshold 5m

GPS ephemerides

IGS final solution

Carrier phase smoothing

Every 15 minutes

GPS Data processing mode

lonosphere free P code with single difference

Estimation Strategy

Filtering arc

1 day batch

Parametre estimation

8 (6 state vector, drag and solar pressure coefficients)
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Figure 6.5 24 hours OD result for SACC using broadcast and IGS ephemerides.

6.4.2 Discrete Short-arc Results

As described in Section 6.3.3 discrete short-arc means batch-to-batch and that there

is no correlation between each batch. Three days’ SAC-C GPS data has been
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processed using different arc lengths: 15 minutes, 30 minutes, 1 hour, 2 hours, 3
hours and 4 hours. The main purpose of this test is to estimate the achievable orbit
determination accuracy with short arcs. The full orbital model mentioned in the
previous section was used and orbital parametres were estimated. The 3D RMS orbit
errors for every option are illustrated in Figure 6.7. It is observed that the best result
was achieved by a 2 hour arc. Longer arc filtering generated even worse results,
which suggests orbit system error exceeds the measurement noise level as the arc
becomes longer than 2 hours. Figure 6.8 shows the RMS error in the along-track,

cross-track and radial components. Figure 6.9 shows the velocity error.

6.4.3 Sliding-window Short-arc and Parametreization

The performance of sliding-window short-arc filtering was also tested. Table 6.4 lists
the window sizes and update rates for the different schemes. The window size is
around 3 times the update rates, so we can use 66% of the data as solutions from

every batch. The results are presented and discussed in the next section.

Table 6.4 Sliding-window short-arc data selection overview.

. overlap length | pre-overlap (minutes)
update rates (minutes) (minutes) Discarded measurements

15 minutes 3.0 6.0 3.0

30 minutes 5.0 10.0 5.0

1 hour 10.0 20.0 10.0
2 hours 20.0 40.0 20.0
3 hours 60.0 60.0 30.0
4 hours 80.0 80.0 40.0

Furthermore, orbit parametre estimation was introduced. We used two schemes:
e | atmosphere drag coefficient

e |I: atmosphere drag coefficient and solar pressure coefficient
When scheme Il was considered only longer arcs (1~4 hours) were tested because

the estimation process is unstable with very short arcs. All the results are presented

in the next section.
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6.4.4 Error Analysis

Based on the filtering results of the previous sections, experiments were carried out
to study the filtering residuals with different arc lengths for LEO Orbits. The
following aspects were inspected:

e Pre-fitting and post-fitting residuals were analyzed. We want to distinguish
the errors caused by different sources, such as orbital model error,
measurement model and measurement noise. The use of the JPL precise
ephemerides results this split to be made.

e Orbital model errors caused by different arc length, and the parametre
estimation results in a short-arc filter.

e The effect of different weighting schemes on the residuals.

e The batch filter convergence speed, as this greatly affects the computional

efficiency.

Figure 6.9 compares all short-arc filtering schemes. We found that filtering with
sliding-windows of 2-to-4 hours and 7 or 8 parametres (6 states+l for drag
coefficient +1 for SRP), usually gives good results, achieving 3D RMS of 1.3 m.
Figure 6.16 compares the pre-fit residuals of the OD filter for all the short-arc

filtering schemes, showing the residual growth with the data arc.
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6.4.5 Accuracy vs. Computional Burden

After the proposed techniques discussed in Chapters 3, 4, 5 and 6 have been
combined into the short-arc filter, the overall orbit determination performance was
tested. We used the simplified orbit dynamical model introduced in Chapter 3, but
with the Earth gravity acceleration approximation method. In addition we used the
sliding-window carrier-phase smoothing method combined with the simple outlier
detection algorithm discussed in Chapter 5. We used the sliding-window method
because it generally outperforms its discrete counterpart. The position and velocity
accuracies were compared with both the long-arc orbit determination and the
onboard navigation solution. We also investigated the computional burden. Table 6.5
lists the candidate test schemes. Figure 6.19 shows the orbit error in the along-track,
cross-track, radial directions and 3D for all the short-arc filtering schemes, from SPP
to long-arc OD results. Figure 6.20 illustrates the corresponding velocity errors. All
results are with reference to JPL’s GIPSY-OSISS POD solutions accurate at

centimetre level. In comparison with the long-arc orbital accuracy of 3D RMS of
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0.8m, an accuracy of 1.2m was achieved with a 2-hour short-arc. For velocity, better

accuracy is achieved with 2-hour short-arc data.

Figure 6.21 compares the computional burden. The computing time compared long-

arc OD, SPP and sliding-window short-arc methods. It was observed that the

computation time for 2-hour short-arc methods could be shortened from about 1000

second to 30 seconds. This improvement is very significant for onboard orbit

determination.

Table 6.5 Short-arc filtering comparison test schemes.

Schemes | Method Orbital model | Arclength | Updates

I SPP (I1GS) - - -

11 24 hours discrete arc Full 24 hours -

111 Sliding-window short-arc | Simplified 30 minutes 10 minutes
v Sliding-window short-arc | Simplified 1 hour 20 minutes
\% Sliding-window short-arc | Simplified 2 hours 40 minutes

3D Positioning RMS Error (m)

Radial direction

=3 2 hours short-arc 0D

Along-track direction

.

|__FLiTels]

[ 30 minutes shon-arc 0D
1 hour short-arc 0D

Cross-track direction

3D

Figure 6.19 Comparison of the along-track, cross-track, radial and 3D orbital error

for all the short-arc filtering schemes with SPP and long-arc OD results.
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6.5 Summary

A dynamic approach is necessary for onboard orbit determination at different

altitudes in order to achieve metre-level orbit accuracy and provide continuous orbit

175



solutions in circumstances where there are few GPS observations.
A simple but robust dynamic method has been proposed based on short-arc batch
estimation, in order to address both orbit accuracy and computional burden issues

critical for onboard orbit determination with GPS code measurements.

Furthermore, the sliding-window short-arc method can fulfill the requirement for
near-real time onboard orbit determination onboard. It updates the processing arc
every 5 ~ 40 minutes, and generates the orbit solution with 5 ~ 40 minute delays,
with high accuracy, after the last observation. The computation time for the process

takes several seconds to 20 seconds to complete using a PII1 processor.

The experimental results from three day data sets of the SAC-C mission have
demonstrated that use of the shorter data arcs allows for simplifications of both the
physical and observational models. We can make the following conclusions for
SAC-C:

e With a data arc as short as 30 minutes, a 3D position RMS error of 2.5 m and
3D velocity RMS error of 5 mm/s can be achieved with 5 minutes latency.
The solution is more stable than that of a traditional Kalman filter, and it
doesn’t require any initialization process (which is around 4~6 hours for a
typical Kalman filter). Furthermore, the computional burden is comparable to
Kalman filter processing.

e With a data arc of 1~2 hours, a 3D position RMS error of 1 m and 3D
velocity RMS error of 2 mm/s can be achieved with 10 ~ 20 minutes latency.
The radial component position accuracy was 40 c¢m, which can satisfy many
scientific applications. The accuracy is nearly reaching that of a ground-
based long-arc OD using the same data sets (smoothed code, standalone)
with much less computing burden.

In summary, the result achieved with the proposed short-arc strategies is quite

encouraging and promising, suggesting a new method for onboard orbit

determination.
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Chapter 7

Orbit Determination for FedSat

The above chapters focus on models and estimations issues, including simplification
of orbital models, improvement of measurements and development of short-arc
estimation strategies. In this chapter, we present the results from FedSat orbit
determination mission and tracking. This section, on the one hand, will further verify
the theory and concepts proposed models and methods, and on the other hand,
demonstrate the effects of the proposed strategies in a ground-based near-real time
precise orbit determination system for FedSat, which has supported the FedSat
scientific missions, such as Ka-band tracking and GPS atmosphere studies, within

the CRCSS community, since its successful launch in December 2002.
7.1 Overview of FedSat

Although Australia was the third nation in the world to be able to launch a satellite in
the 1960s, it is some thirty years since WRESAT, a small amateur satellite was
launched. This situation changed in 1997 with the establishment of the Cooperative
Research Centre for Satellite Systems (CRCSS) under the Australian Government’s
CRC Program. The first and primary project of the CRCSS is to launch a low Earth
orbiting microsatellite, FedSat, into an 800 kilometre circular polar orbit with an
inclination of 98.7° . FedSat was successfully launched into the orbit at the
Tanegashima Space Centre in Japan on 14th December 2002, and has been operating

for the following three years.

FedSat is not a mission dedicated to a single scientific or engineering goal. Instead, it
carries a range of experimental research payloads, which are based on the
engineering and scientific activities of the participants in the CRCSS, in order to

gain experimental information. These CRCSS activities are focused under four

177



programs, the Space Science Program (University of Newcastle, NSW; La Trobe
University, Melbourne), the Communications Program (University of South
Australia, Adelaide; University of Technology, Sydney) and the Satellite Systems
Program including navigation and high performance computing (Queensland
University of Technology, Brisbane). The payloads include a fluxgate magnetometre,
Ka-band satellite communication system, a GPS receiver and a high performance
computing platform.

The GPS payload of FedSat, the BlackJack Receiver, is a joint project between
CRCSS and NASA, USA. It is a space enabled specific receiver, costing about
US$500,000. It can provide real time orbit and time information for the onboard and
ground scientific usage. Figure 7.1 shows the FedSat mission launch phases. Figure

7.2 shows the FedSat in the assembly laboratory and deployment in space.

Launch  Separation
o
0y
Payload
Check-out
Time
Mid December 2002 Late December 2002 March 2003
-Nominal Operations
LEOP Commissioning _ -Measurement Campaign

Figure 7.1 FedSat payload mission phase.

12:16:44

Figure 7.2 FedSat in the assembly laboratory (left) and deployment in space (right).
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7.2 Orbit Determination of FedSat

7.2.1 Introduction

A low Earth orbiting (LEO) satellite collecting GPS data with an onboard GPS
receiver can compute its state (position & velocity) in diverse ways, the choice
depending on, in part, the type of orbit and mission requirements. FedSat, like many
other LEO satellites, uses GPS for engineering and scientific missions. The
requirements for orbit knowledge include:

e Real-time state knowledge for routine tracking operations and onboard
engineering needs. A 3D RMS accuracy of hundreds of metres is needed.

e Near real-time orbit state knowledge for space-based Wide Area Differential
GPS positioning studies and FedSat Doppler positioning testing, requiring an
accuracy of metre-level or better.

e After-the-fact precise orbit determination for scientific analysis, such as GPS

atmospheric sounding, to achieve orbit accuracy of a few decimetres or better.

A large number of the existing GPS flight experiments have demonstrated that GPS
can meet the stringent needs for the most dynamically unpredictable flight vehicles
with continuous tracking of GPS satellites. The principal difference between FedSat
and other GPS-based LEO satellites is that FedSat onboard GPS data collection will
not be continuously carried out due to the limitation of power supply. More
specifically, only a total of 20 minute time per orbit period, which is about 100
minutes, will be allocated to GPS continuous operation. This tracking scenario
changes almost everything: from achievable orbit accuracy of different levels, to

techniques for improved real time positioning and orbit determination.

7.2.2 Problems with FedSat Orbit Determination Using GPS

7.2.2.1 Duty Cycle GPS Operation Mode

Unlike many other GPS-based LEO satellites, the FedSat flight GPS receiver only

operates in duty-cycle mode, or 20 minutes per orbit (100.9 minutes) due to the strict
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limitation of power supply onboard the satellite, although it may occasionally turn to
continuous operation for precise orbit experiments. Pre-launch testing revealed that it
took 4 to 5 minutes for the GPS receiver to start normal operation after power supply
is available. This means there will be observations of 1-by-15 minutes per orbit

effective for orbit determination.

Knowing the achievable orbit accuracy under specific operation conditions and
processing modes was of primary concern to the operators. Our pre-launch
covariance analysis was given towards the 1-by-15 operations [Feng, 1999, 2000]. It
is now necessary to study the orbit accuracy in the cases of 1-by-15 minutes
operations. Because a filtering processing is unlikely to proceed onboard the FedSat,
we must use the flight GPS data downloaded each day to compute and typically

predict the orbit into future 24 to 48 hours for real time operation use on the ground.

Results show that under the assumption of expected GPS standalone positioning
performance where the 3D positional RMS accuracy about 10m to 15m, the effective
data set of 1-by-15 minute per orbit for 24 hours can still result in quality predicted
orbit for 48 hours. The predominated errors in the predicted orbit are the uncertainty
of atmospheric force, which alone would reach 80 metres within 72 hours of
prediction. The second largest modelling errors, solar radiation pressure, will lead
the orbit errors of less than 10 metres. Considering all the effects including the
atmospheric drag, the accuracy requirements of 100 metres in each component can
be satisfied within two days of prediction. Figure 7.3 shows the GPS observation arc
for FedSat.

GPS observation arcs

Figure 7.3 FedSat GPS duty cycle operation.
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7.2.2.2 Aft-looking GPS Antenna

Normally in a LEO satellite mission, an upward-looking antenna is used for onboard
navigation, timing and precise orbit determination purposes, and the antenna
mounted towards other directions are used for different scientific missions. FedSat
collects GPS data with its only aft-looking antenna, for both orbit determination and
other scientific applications such as atmosphere occultation. As a result, only two-
thirds of the hemisphere can be observed, and about half the measurements are
collected at negative elevations. Figure 7.4 illustrates the image of the FedSat and
the GPS antenna looking towards the anti-velocity direction. According to the
altitude of the FedSat and the radius of the Earth, the negative elevation will reach —
27.5 degrees. Therefore, the field of view of the aft-looking antenna is nearly two-
thirds of the hemisphere. The mask angles for orbit determination or positioning are
90 and —-25 degrees respectively. The satellites with the elevations between —25 and
—27.5 degrees maybe occulted, and their measurements can be used for atmospheric
occultation studies [Yunck, 2002].

\ Negative Velocity Vector

<

Figure 7.4 FedSat aft-look GPS antenna location.
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Figure 7.5 shows how the FedSat aft-looking antenna views the GPS satellites in
two-thirds of the sky, that is, the scope of elevation from —27 to 90 degrees. To avoid
the effect of the atmosphere under 100km on the measurements, we can set the mask
angle of —25 degrees in the process. The signals with elevation angles between —25
and —27 degrees are subject to the tropospheric delays, which, can be used for
atmospheric occultation studies. In fact, due to the effect of occultation, the signals
with elevation between —27 to —28.5 degrees are often received in the FedSat orbit.
Our experiment result illustrates the distribution of the measurements against the
elevation angles. We have observed that the majority of the measurements are
collected with the elevations of under 20 degrees. The result is presented in the

following sections.
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Figure 7.5 GPS measurement scenario in FedSat.

7.3 FODT Software Package

7.3.1 Introduction

To facilitate the research work and engineering application, a comprehensive GPS

orbit determination software package, FedSat Orbit Determination and Tracking
Software (FODT) has been developed during this research. Based on previous work
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done in CRCSS, FODT has been developed by the author to perform the orbit
determination using GPS for FedSat. It can fulfill the following tasks:

e Dynamic model analysis; it contains a full set of precise orbit dynamic model
implementation. The first and second order partial derivatives of the state
vector and parametres with respect to the initial parametres also have been
fully implemented using precise models.

e High accuracy orbit integrator for short or middle term. Several numerical
methods are implemented in the software, including 4™ Runge-Kutta, 7/8™
Runge-Kutta, 6/4™ Runge-Kutta-Nystrom and 4" order Integra Equation
Method.

e Precise Point Positioning (PPP) for spacecraft with or without the IGS
precise ephemerides products.

e Near real time orbit determination (OD) using GPS measurements for LEO
orbiters.

e Comprehensive GPS code/phase measurements analysis tools, which can
give a detailed report of GPS measurement quality. This can be done in a pre
Or post process sense.

e Furthermore, FODT also provides a powerful real-time software

development scheme for onboard orbit determination algorithm validation.

GPFE Tracking software for FedSat
T L i I i o I I B A o R

Humber of epochs for polar motion tahle 5
e For Sun.Moon.Precession and Nutation tahles
Initiation of tahles and constants ready?

Reading the Reference Orbit data......

Finish Reading the Reference Orbhit data
The orbit solution has 1448 epochs?
Reading GPS Flying data set 1

Finish the GPS Flying data input?
Totally B638 epoches data.

Finish Prefitting the Raw GPS Flying datat
Totally Bh38 effective epoches data selected?
Finish Reading GPE Ephemeric datat
Calculating the GPS satellites orbit......
Finizsh the GPS Ephemerics prepare?

=##bBegin the 1 process»sess
This process mode is Least Square Filter Process

Figure 7.6 FODT software interface in DOS environment.
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From the very beginning, FODT was designed as a modulated software package. It is
in a third-tier logical structure. It contains a basic library, which provides more than
600 common functions to the upper level modules; each level two module can fulfill
a single logical operation, such as data edit, GPS ephemerides calculation, single
point positioning, etc; In level three, some scripts are used to configure and link level

two modules to accomplish a complicated job. Figure 7.7 illustrates this concept.

From the programming point of view, FODT has been coded using ANSI C and
FORTRAN; it contains 15 modules, more than 300 source files and around 70,000

lines of source code in total.

Level 1: Basic library

Math
functions

Level 1:
Rasic

Geodetic
functions

A A4 A A 4 A 4 A

Level 2: Functional module

Orblt model
!

Ephemerid GPS SD Equation ]

[ LS Fllter

\ \
integration
Level 3: Job script

Figure 7.7 FODT software module structure.

7.3.2 Orbit Determination Module

Among all the modules in FODT, the most important one is the precise orbit
determination module. It is used to support the FedSat Ground Autonomous Ka-

Band communication system tracking. As showed in Figure 7.8 it contains four parts:
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data acquisition and fitting, orbit modelling, measurement modelling, orbit filtering
and orbit prediction.

The Data Edit (DE) module reads flight RINEX file, detects and excludes the
outliers in code measurements, based on statistics of linear combination of code and
phase observables. This process depends on flight measurements only, and is
independent from Selective Availability, satellite orbit and geometry. The criteria for
acceptance or rejection of a measurement vary from mission to mission in each
procedure, achieving a balance between information quality and quantity for overall
orbit accuracy. This module outputs a file of clean and standardized RINEX file for

follow-up processing.

Orbit Modeling (OM) module, operated as a stand-alone program and subroutine,
computes spacecraft orbits using numerical integration. OM starts from specified
initial orbits, uses several forces models to integrate the differential equation to
produce a nominal orbit, which is a set of time-tagged state vectors, together with the
partial derivatives that relates the current states to the epoch-state, which is at the
beginning or the end of the data arc. Two numerical integration methods have been
built into OM to create an orbit trajectory and partial derivatives simultaneously: an
adaptive-size fourth-order Runge-Kutta Method based on differential equation and a
fixed-size Integration Equation (IE) method as described in Feng [2001].

Measurement Modeling (MM) module calculates the GPS orbit and clock bias from
either broadcast or IGS ephemerides, then establishes the linear relationships
between GPS measurements and the epoch state of the orbit. First, it computes the
theoretical distances between using the nominal orbit of the spacecraft and GPS
orbits, and then forms the pre-fit residuals with the range observations. Next it
computes the design matrix of the partial derivatives of the ranging measurements
with respect to the state elements, which include at a minimum, the adjustments to
the six state parametres, and may include the adjustments to physical parametres:
solar radiation pressure (SRP) as well as atmospheric drag coefficients. A detailed
discussion of construction of the observation equation may be seen in Liu [2000],
Feng [2001] and Yunck [1996].

185



Orbit Filtering (OF) module is a batch least squares estimator, which estimates the
set of six state parametres along with some physical parametres, such as atmospheric
coefficients and solar radiation pressure coefficient, using the data over a period of
hours to days.

Orbit Prediction (OP) module consists of orbit integration and orbit representation
processes. Orbit integration uses the improved epoch-state and estimates of physical
parametres instead, propagating 2 to 3 days forward for real time FedSat tracking
use. These orbit solutions are presented in a given format and time steps, such as SP3
at 60 seconds, in both Earth centred and Earth Initial (ECI) and Earth-Centred and
Earth-Fixed (ECF) coordinate systems. Orbit Representation uses a polynomial
function, such as Chebyshev polynomial, to represent the orbit as a continuous
function of time segment by segment. This process must not lead to loss of orbit

accuracy.
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Figure 7.8 Orbit determination module.
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7.4 FedSat GPS Data Quality Analysis
After the initial testing process, GPS flight data has been collected. Table 7.1 and 7.2
summarizes the data set collected for our experiments. The following sections will

discuss the results in detail.

Table 7.1 Experimental dataset overview.

30/31 01 02 03 08/09 014

# of data arcs 13 7 2 2 7 1

Arc length (min) 5 to 15 minutes

Onboard navigation Solutions Given at rate of 10 seconds

Raw GPS data Recorded at 1-second

Table 7.2 GPS raw data overview for days 364, 365 2002.

File Epochs Observations SVs<4 SVs>=4 avg\r/zge
fed36402.0bs 9734 56005 1339 (3694) 8395 (52311) 5.75
fed36502.0bs 714 3654 2(4) 712 ( 3650) 5.12

Continue

File Arcs Min Arc length Max Arc length Average arc length
fed36402.0bs 14 380s 974s 698s
fed36502.0bs 1 777s 777s 777s

7.4.1 GPS Measurement Quality Analysis

Firstly, the GPS measurement quality is of concern, because FedSat only has one aft-
looking GPS antenna onboard. The GPS satellite visibility is poorer than other
satellites with up-looking antenna. Figure 7.5 shows how the FedSat aft-looking
antenna views the satellites in the two-thirds of the sky, that is, the scope of elevation
from —27 to 90 degrees. To avoid the effect of the atmosphere under 100km on the
measurements, we can set the mask angle of —25 degrees in the process. The signals
with elevation angles between —25 and —27 degrees are subject to the tropospheric
delays, which, can be used for atmospheric occultation studies. In fact, due to the
effect of occultation, the signals with elevation between -27 to —28.5 degrees are
often received in the FedSat orbit. Figure 7.9 illustrates the distribution of the
measurements against the elevation angles. We have observed that the majority of
the measurements are collected with the elevations of under 20 degrees.
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Figure 7.9 Number of measurements with respect to elevation angles of FedSat GPS
data on day 364 and 365 of 2002.

During the initial operational period, the GPS receiver onboard the spacecraft turns
on for 20 minutes for every orbit of about 100 minutes. After each cold start, it takes
normally 1 to 5 minutes for the receiver to reacquire the signals from GPS satellites,
and to capture four satellites for navigation solutions. Figure 7.10 illustrates the GPS

operation times in these data sets.
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Figure 7.10 FedSat GPS operation arcs for day 364 and 365 of 2002.
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7.4.2 P-code lonospheric Delay

Generally, from the pure mathematical sense, the ionosperic delay can be expressed
as the difference of both P-code pseudoranges:
P =P, -P ~d,, (7.1)

Figure 7.11 illustrates the P-code ionospheric delay on day 364 and 365 of 2002.
7.4.3 P-code Noise

After the system errors have been removed from the GPS measurements, the
positional accuracy is determined by the measurement noise and geometry only. The
measurement noise includes the signal noise, hardware noise and multipath effect. In
this chapter, the noise of both P, and P, were inspected using the following
expression [Zhou, et al., 2003]:

PMy = (P = Pu)= A (L — L),

PM,, = (P, = Py )= Ao (Lyey — Ly, ) t=0,1,2... (7.2)
Here A,= 0.1903 metres for the frequency of f, (1575.42 MHz), and A, = 0.2442
metres for the frequency of f, (1227.60 MHz). PM,, and PM, mainly contain
receiver noise and multipath errors. The standard deviations of the observations P,

and P, are given as:

2 2
_|7Pm, _.|7Pm, (7.3)
o = s o =
P1 2 P2 2

Due to possible variation of atmospheric conditions between epochs, (5, and &,

are conservative estimates to the standard deviation for the measurements P, and

P.).

Figure 7.12 illustrates P, ranging noises against the elevations for the Day 364, 2002
(upper) and Day 008, 2003 (lower), respectively. The overall P, range RMS values
for the three data sets are 1.44m, 1.66m respectively. The RMS values are estimated
excluding the P, ranging noises greater than 15 metres, which are 0.16%, 0.32% of

total in the two cases.
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Figure 7.11 P-code ionospheric combinations for all satellites on day 364 and 365 of
2002.

Figure 7.13 is the histogram of the P, ranging errors for the period of Day 083 to

Day 086, 2003, showing a good normal distribution nature. The threshold of + 5m

was set for both RMS estimation and follow-up orbit estimation.
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Figure 7.13 Histogram of the P, ranging errors on day 364 and 365 of 2002,

showing their good normal distributed nature.

Table 7.3 compares the RMS values from different satellite missions and FedSat data
sets of different days against elevation angle. It is observed that the GPS data with
elevation angle below 10 degrees are much noisier than those with higher elevation
angles for CHAMP and SAC-C missions where flight data for orbit determination
were collected using an up-looking antenna. In the FedSat case, we have viewed the
following instead:
e The overall RMS uncertainty/noise level of two FedSat data sets is constantly
3 to 5 times higher than these for CHAMP and SACC data;
e The data with elevation angle below -27 degrees is much noisier than those
above -27 degrees;
e The ranging noise level for negative elevation is not necessary higher than
those for positive elevation;

e The overall noise level of P, code measurements in the three FedSat data sets

is about 1.6m showing a consistent data quality.

We also found that there are some big jumps in the P, P,, P, measurements of raw

RINEX data file. This jump happens to every satellite observed. We assumed this is

due to the receiver clock jump and can not be grouped to the P, P,, P, errors; there
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is @ 9000km clock jump in this instance. From another point of view, we can see that

there are big clock errors in FedSat GPS receiver sometimes.

Table 7.3 Summary of the RMS values from different satellite missions and FedSat

data sets of different days against elevation angles.

All

Mission Receiver Day Data | O<Elev.<10 | 10<Elev.<20 | Elev.>25
CHAMP BlackJack 3days | 0.53 0.93 0.64 0.42
SAC-C TurboRogue 11 | 3days | 0.32 0.73 0.46 0.17
Topex Motorola 3days | 0.34 0.38 0.38 0.33
Monarch
Day Elev.<-27 | -27<Elev.<0 Elev.>0
FedSat 364,
BlackJack 5000 1.44 4.19 1.00 1.56
FedSat 008,
BlackJack 2003 1.66 4,06 0.93 1.98
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Figure 7.14 FedSat code noise on day 364 and 365 of 2002 compared with SACC
and CHAMP.

7.5 FedSat Onboard Navigation Solution (ONS) and Single Point
Positioning (SPP)

The FedSat onboard navigation solutions (ONS) are computed by the Blackjack
receiver with all satellites in view, regardless of negative and positive elevations.
Suffering from the large code noise and poor satellite geometry as indicated above,

the FedSat ONS is expected to be much worse than the ONS in other missions.

To evaluate the FedSat ONS solutions, we perform two types of comparisons:
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e with independently computed single point positioning (SPP) solutions from
the code measurements, to understand the consistence; and
e with FedSat orbit filtering solutions, computed with the QUT FODT software

as described in the next section

Figure 7.15 compares the ONS and SPP 3D RMS values with respect to the FODT
solutions for a period of 1050 seconds (105 epochs, ONS were given at 10 seconds),
showing the consistence between the two solutions under normal observational
conditions. It appears that the SPP solutions are more robust against some outlying
code measurements. Under the worst geometry (large PDOP), both ONS and SPP

solutions suffer from the outlying code measurements.

xl

Figure 7.15 Comparison of the ONS and SPP 3D RMS values with respect to the
FODT solutions.

Figure 7.16 plots the histogram of the ONS 3D positional errors, which indicates a
long-tale normal distraction of the ONS positional errors. According to this
histogram, the 16 of 3D error is less than 40m. However, the 3D orbit errors with
the 95, 97, and 99 percentiles reach 200m, 400m and 800m respectively. Statistical
analysis based on the ONS errors falling within 95 percentile shows a 3D RMS of
57m, with means values of 9.3, -0.7, and —-8.3m for the x, y, and z components
respectively. Figure 7.17 is a scatter plot for the ONS positional errors within the

range of + 200 m.
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Figure 7.16 Histogram of the ONS 3D positional errors, indicating a long-tale

normal distraction of the ONS positional errors.
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Figure 7.17 FedSat ONS positional error scattered within the range of £ 200m. An

overall 3D RMS value based on the error of this range is estimated at 57m, which is
about three times of the CHAMP ONS 3D RMS value.
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7.6 Orbit Determination for Ground Ka-Band Tracking

7.6.1 Introduction

FedSat is a low Earth orbiting micro-satellite, which conducts space science,
communications, Earth remote sensing and engineering experiments. The satellite
flies the BlackJack spaceborne GPS receiver to compute its position and velocity for
routine tracking operations, platform engineering needs (time keeping), as well as
scientific experiments such as orbit determination (OD) and GPS occultation studies.
Of all the above applications, the most restrict engineering need is specified by the
Ka-Band tracking, requiring a pointing accuracy of 0.03°. As shown in Figure 7.18,
the allowed orbit error Ar is approximately expressed as the function of the pointing

error Af, elevation angle £, and altitude of the orbit:

Ar:Aﬂﬁp(ﬂ) (7.4)

Range to FedSat:
p =800km

Allowed
pointing error

(AB=0.01deg)

(Ar)

Allowed
/ orbit error

Elevation
angle B

Allowed 2D orbit error:

Ar=Afe

T
150" p(B)

Allowed 1-D orbit error:

AA=AC =Ar/~2

Figure 7.18 The accepted orbit error expressed as the function of the

pointing error AS, elevation angle £ , and altitude of the orbit for FedSat
ground-based Ka-band tracking.
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Figure 7.19 Accepted orbit error with respect to elevation angle.

Figure 7.19 plots the allowed orbit error against the elevation angle. It is observed
that the most restricted orbit accuracy is required where the satellite passes over the
zenith direction, f#=90°". For the case of FedSat orbit, the requirement will be
Ar =140m. Only the errors in along-track and cross-track will affect the pointing

accuracy. The accuracy requirement for each direction is

AA=AC =139/+/2 ~100 m (7.5)
7.6.2 OD Processing Strategy in QUT Ground Base Station

To satisfy the Ka-Band tracking demand, an automatic OD processing system has
been developed in CRCSS QUT node. It was established around November 2002 by
Willam Kellar and the author. From the launch date to May 2003, the system has
been thoroughly tuned and automatically running since then. The system includes
two parts: GPS data acquisition / decoding and OD processor. Based on the accuracy

and time requirements, the OD processor was configured as the following:
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Table 7.4 Ground OD data processing strategies for Ka-band tracking.

Orbit force modeling

Earth Gravity Model JGM-3, 50x50
Third body gravity Sun & moon, all planets except pluto
Planet ephemerides JPL DE405
Solar pressure Direct effect
Atmospheric density model MSIS 86
Pression / Nutation I1AU1976 / AU 1980 (with corrections)
Polar motion IERS bulletin B

GPS Data Processing modeling

P code noise threshold 5m
GPS ephemerides IGS ultra rapid solution
Carrier phase smoothing 15 minutes arc length
GPS Data processing mode lonosphere free P code with single difference
Estimation Strategy
Filtering arc / Prediction arc 1~2 days / 2~4 days
Parametre estimation 8 (6 state vector, drag and solar pressure coefficients)
Orbit representation method Chebyshev polynomial, 25minute segment

Under the operation mode, every pass of GPS data is downloaded as soon as the data
is available at the FedSat Control Centre. Meanwhile all the needed ephemerides
data, solar activity data, geomagnectic data and IERS data are downloading by a
robot program. OD processor will be launched after enough GPS data were
successfully collected and decoded. Usually, the OD solution will be available
within one day and will be placed on a restrict access ftp server for CRCSS

community engineering and scientific usage.

7.6.3 OD Results

Orbit determination and prediction was performed for day 30-December, 2002 to 2-
January, 2003. Figure 7.20 is the comparison between Filtered orbit and onboard
navigation solutions, showing some large uncertainties of a thousand metres in the
navigation solutions, as the filter solution is a smooth orbit, which may have a
systematic error growth, but no irregularities. Figure 7.21 compares the orbit
determination result with results from SAC-C and CHAMP. Figure 7.22 shows the
orbit four days prediction result compared with the onboard navigation solution
(ONS).
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Comparison between FedSat Orbit Determination and Tracking (FODT) solutions and GRS navigation solutions
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Figure 7.20 Comparison between the FedSat FODT and FedSat ONS solutions over
the filtering orbit of 24h (2:50,364 to 2:49 365, 2002) and the propagation orbit from
40h to 98h (Days 001,002 & 003, 2003).
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Figure 7.21 Illustration of mean, standard deviation (STD) and RMS values over the
filtered orbit (Day 364/5, 2002) and predicted orbit on Days 001, 002 and 003, 2003.
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Figure 7.22 FedSat Orbit filtering results compared with SAC-C and CHAMP.

Figure 7.20 compares between the FedSat FODT solutions and FedSat ONS
solutions over the filtering orbit of 24h (02:50, Day 364 to 02:49, Day 365, 2002)
and the propagation orbit period from 40h to 98h (Days 1 ~ 3, 2003). The results
show the agreement of £120m with the ONS solutions at the end of the propagation
period of 72 hours. Figure 7.21 compares the mean, standard deviation (STD) and
RMS values of the filtering orbit for Day 364 of 2002 and the propagation orbits on
Day 1, Day 2 and Day 3 of 2003. Figure 7.22 compares the filtering and ONS results
between FedSat and SAC-C/CHAMP. According to these figures, we have obtained
the following observations:

e The STD values do not grow with the extension of the propagation arc from
Day 1 to Day 3; the mean values show a steady growth when the prediction
arc extends from Day 365 to Day 3;

e The mean values basically reflect the filtering and/or propagation
uncertainties, while the STD values reflect the uncertainties of the ONS
solutions. If this is the case, we may indicate that with the given data sets
analyzed, the FODT filtered orbit errors are in the order of £10m in each
component, while the predicted orbit errors in each component will be in the
order of £20m, £60m and +£80m for 24 hours, 48 hours and 72 hours forward,

respectively

7.6.4 Covariance Analysis of Data Set 08403~08703

For the data sets collected in the period of Day 83 to 87, we apply strict quality

control procedures to excluding all the possible outlier measurements. For instance,
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the P, measurements with associated P,, errors beyond the thresholds of +7.07m
(5m for P,) were excluded before entry to orbit estimation. FODT is run to produce

the filtered orbits for each day separately, and propagate the filtered orbit of the first
day (Day 83) 96 hours forward. Figure 7.23 shows the difference between the
prediction orbits from Day 83 and the filtered orbits over each day from 084 to 087.

It can be clearly seen that the predicted orbit errors fall in the ranges of £30m, £70m,

+120m and +240m for the first, second, third and forth day, respectively.
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Figure 7.23 Difference between the prediction orbits from the end of day 083 of
2003 and the filtered orbits over each day from 84 to 87 of 2003.

7.7 FedSat Short-arc Processing

7.7.1 Introduction

Normally, the FedSat orbit determination solution of previous strategies comes out
within one-day latency. This is sufficient for the Ka-Band ground tracking because
we normally predict the orbit into the future about 2~4 days. But for some other
applications that need ultra rapid orbit solution with high precision, previous method
is not enough. These applications usually require metre level accuracy within several

hours’ latency.
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Based on the short-arc techniques in the Chapter six, a short-arc processor was
designed to generate a rapid orbit solution. Basically, the orbit modeling and GPS
data processing strategy are the same as the long arc one except:

e Orbit modeling: for the short-arc processing, the GPS measurement number
is far less than the long arc one, it is not safe to estimate the osculate
parametres like the drag coefficient if the GPS measurements are not precise
and outlier-free enough. Otherwise the solution will fail due to wrong orbital
parametre estimation. On the other hand, it is also very safe to ignore some
osculate orbital parametres because the orbit propagate error due to modeling
error is limited in short-arc. In the FedSat short-arc filtering case, the solar
pressure and drag coefficients are fixed in the filtering process. We used the
two values as:

Cgya =0.002 and C,, =0.0008

drag solar

Thus, only six state vectors are estimated in the short-arc filtering. This will
make the solution more stable.

e GPS data processing: First, the SPP pre-processing is not carried out in the
short-arc processing due to the time limit. Second, only broadcast
ephemerides is used instead of IGS precise ones. This will greatly reduce the
latency, but not reduce the precision too much.

There are two ways to configure the short-arc processor. The first one is to process
every short-arc separately. Due to the Duty Cycle operation mode of FedSat, we
usually process one or two 15 minutes arcs in a short-arc processing, which is about
one or two hours. After every single pass of data is downloaded, the processor can be
launched and the solution will be available in minutes. The orbit prediction of
several hours can be made from the filtering results. In this way, the solution can be

available within tens minute latency.

Another strategy comes from the idea of “Sliding-window processing”. Firstly, a
longer arc of data, for instance, around 6 ~ 8 hours, is processed. As soon as a set of
new 15 minutes data comes, a new data arc is formed by deleting the oldest 15
minutes data. In this way, the filter will result in more stable accuracy solution and
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longer prediction, but the latency will be around 1 ~ 2 hours due to longer processing

time.
7.7.2 Experiment Description and Results

The short-arc experiments were carried out on day 364 and 365 of 2002. The arc
length details in these two days have been given in Figure 7.10. Figure 7.24 gives the
short-arc filtering results and compared with SPP. The 3D positional RMS was given.

All the results were compared with 24h long arc OD results.

FedSat short-arc OD results compared with long-arc OD results
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Figure 7.24 Comparison of shot-arc OD results with long-arc OD.

7.8 Ground-based Autonomous Orbit Determination System

7.8.1 Introduction

Although the previous ground orbit determination system has been running smoothly
and generating a reasonable solution for some engineering projects, a more
comprehensive precise orbit determination system is proposed. The new autonomous
system is to provide the FedSat orbit solution at sub-metre level for scientific and
engineering applications. Based on current work, this system was expected to be in

operation in 2006.
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7.8.2 Automation

One of the most important goals of this system is the automation. This not only
means it can automatically download, edit and process data but also means that it can
automatically generate different OD strategies based on the data quality and OD
performance analysis. The system will be running on a Windows XP server. After
initial launch, it should continuously work without any human interference. The
main automation features include:

e Automatically downloading real time GPS data; daily broadcast ephemerides
data, IGS data and sun flux data; monthly IERS data, geomagnetic data;
yearly JPL planetary DE405 data.

e Automatically generating all the configuration files for each OD modules
based on current data set analysis.

e Automatically running each OD modules, and also can stop and restart the
whole system itself.

e Automatically presenting the result in different formats and generate some
simple text/graphic reports based on different requirements.

e Automatic error reporting and logging. This includes process log and email
alert functions. The main results and error message can be emailed to the

persons who are in charge.

7.8.3 Combined OD Strategy

Generally, the system will generate ultra-rapid, rapid and final orbit filtering
solutions using different strategies. In addition, a PPP solution also will be generated
for ultra-rapid backup solution and analysis purpose. Another layer of this solution
tier is a SGP4 one, it will be generated based on the analysis of several batches of
final solutions. It aims to provide a long-term backup solution in case no
measurements data are available. The system also will predict the orbit for one or
two weeks using the final solution.
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Not all the solutions will be generated at every processing; it depends on the
application requirement and different processing situation. A set of options will be
implemented to let the system know what strategy it should use.

7.8.4 Accuracy and Stability

For the final solution, sub-metre or even decimetre level accuracy is expected. It will
be used for some high precision applications. For rapid solution, metres to sub
metres accuracy can be achieved. For ultra rapid and PPP, metres accuracy is the
achievable. For the SGP4 model, hopefully, hundreds metres to kilometers of

accuracy can be achievable for a several months arc.

The system is more stable because it can generate multiple solutions based on
different and independent algorithms.

7.8.5 OD Strategies

The basic filtering scheme is to process 30 hours GPS data using current OD
processing techniques, the beginning and ending three hours are used for covariance
analysis. The middle 24 hours solution is used as a rapid solution. Seven consecutive
rapid solutions are collected; the overlapped arcs are analyzed to generate a
smoothing function. After that, a smoother is performed for the seven days’ data to

generate the final solution.

The ultra-rapid solution is generated using the “sliding-window short-arc” filtering
technique introduced in Chapter 6. Normally the processing data arc is around 4 ~ 6
hours, and the update frequency is every single pass (around 15 ~ 20 minutes). This

ultra-rapid solution can be available in 2 ~ 4 hours.

Precise Single Point Positioning (PPP) solution is generated after a single set of GPS
observation data and the IGS ephemerides are available, the time latency should be
around 1~2 hours. Usually, the accuracy of PPP for FedSat is worse than other
missions, such as SACC, but a 3D RMS of 6 ~ 7 metres is still achievable with
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precise PPP model. If only broadcast ephemerides are used, the latency should be

within half hour and the 3D RMS accuracy can be around 10 metres.

For SGP4 model, a separate least square filter is used to generate the two line
elements. Only final solutions are used in the filter for accuracy reasons. Because the
limits of SGP4 model itself, the orbit propagation accuracy is only at several
hundred metres. But it is very simple in computation because it is an analytical
model and can be used for a very long arc, such as one or two months. The following

figures illustrate these OD strategies. Figure 7.25 illustrates the details of different

OD strategies.

30h filtering arc 2x3h overlapped arcs

. L < .
Y v
Rapid solution Next rapid solution

Figure 7.25 Ultra-rapid solution, rapid solution and final solution concepts.
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7.8.6 System Structure

This system will be gradually constructed based on current autonomous orbit

determination system. Figure 7.26 illustrates the system structure.
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Figure 7.26 Ground-based autonomous precise orbit determination system structure.
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7.9 Summary

The research effort has been made towards the establishment of autonomous orbit
determination system for FedSat. Based on the experiment results, we have the
following findings:

e The FedSat GPS data quality is three times worse than these achieved with
data from other satellites missions with an up-looking antenna.

e FedSat onboard navigation solutions have shown large uncertainties and
irregularities: although a RMS accuracy of 56m was achieved, it was often
with errors ranging from a few to several hundreds and thousands of metres.

e Filtering processing over the 24 hours arc on 30, December 2002 provides a
convergent estimation for drag parametre, thus resulting in the orbit
positional errors of +£120 m in the end of the propagation period of 72 hours.

With the fixed drag parametre, the prediction errors reach 1.6km in the end of
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120 hours (Day 8 of 2003). The result met the requirement of Ka-band
ground tracking project.

e The autonomous OD system in QUT has demonstrated the ability to provide
tens of metres of FedSat orbit accuracy in half-day delay.

e Preliminary short-arc orbit determination has been validated using FedSat
data; the results show the potential to process data in near-real time. The
short-arc filtering can generate 20 metres accuracy solution using 2~4

revolutions data, which contains a data arc of 20 to 40 minutes.

With the poor quality of data collected under poor observation conditions, the
preliminary OD results are reasonable. Further research effort can be made combine
the SLR and two line elements data into a current processing system, metre level
accuracy can be expected with this multi-data-source system. Furthermore, the
system should have the ability to provide different accuracy solution in near-real

time and post-processing modes.
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Chapter 8

Conclusions and Recommendations

8.1 Summary of Research Contributions

Onboard GPS orbit determination is promising technique for enabling advanced
space engineering and scientific applications. Metre to sub-metre 3D position
accuracy is now possible in real or near-real time. In this thesis we have
systematically studied the models and algorithms for GPS-based onboard orbit
determination, and demonstrated various results using different experiments with
flight GPS data. The research has addressed some scientific and engineering
challenges in onboard orbit determination, and provided efficient technical strategies

and solutions to these problems.

This thesis focuses on the onboard orbit determination techniques and the proposed
onboard orbit determination algorithms were successfully validated using real
onboard GPS data collected from Topex/Poseidon, CHAMP and SAC-C satellites.

8.1.1 Orbit Dynamical Models

Onboard computing power is always limited. Therefore the orbit dynamic models
are often simplified in current onboard orbit determination systems. As a result,
achievable orbit accuracy has been limited to several to tens of metres. In this
research a systematic study of orbital dynamic model simplification has been made
for onboard computing. It includes Earth gravity model truncation, simplified solar
& lunar ephemerides, simplified atmospheric density model, celestial parametre
interpolation and integral equation integrator. All of these techniques together
greatly reduce the computing burden while retaining metre level orbit integration
accuracy. Furthermore, the Earth gravity acceleration approximation method was
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studied and implemented. A pseudo-centre grid with appropriate interpolation
functions replaced the traditional recursive algorithm. Consequently the computional
burden is equivalent to that of a 5x5 gravity model retaining the accuracy of a
70x 70 model. At the cost of a few additional Mbytes storage, which is not a

problem for most onboard spacecraft systems.

8.1.2 Orbit Estimation

A Kalman filter can theoretically generate orbit solutions from epoch-to-epoch in
real time with GPS measurements. The problem is that the stability of the solution
cannot be easily brought under control. In other words, although theoretically a
Kalman filter is ideal for onboard OD processing, in practice it is hard to balance
between different noise and biases in the models and observations. Hence, the results
may be easily affected by measurement outliers, causing the solution to diverge.
Furthermore, the Kalman filter takes several hours of data to obtain a converged
solution, which is quite long for many applications. On the other hand the traditional
long-arc least squares estimation can give stable solutions, but it requires many
observations and long processing time, as well as precise orbit models for good orbit
accuracy. In this study, a short-arc least squares filter with sliding-window
processing was developed, implemented and tested to assure stable solutions while
keeping the computing time short. In addition, the short-arc technique can tolerate
dynamic orbital modelling errors, providing good orbit accuracy without the need for
precise orbit models.

Based on experiments using SAC-C data, the following comments can be made:

e With a data arc as short as 30 minutes, a 3D position RMS error of 2.5m and
3D velocity RMS error of 5mm/s can be achieved with 5 minutes latency.
The solution is more stable than that of a traditional Kalman filter, and it
doesn’t require any initialization process (which is around 4~6 hours for a
typical Kalman filter). Furthermore, the computional burden is comparable to
Kalman filter processing.

e With a data arc of 1~2 hours, a 3D position RMS error of 1m and 3D velocity
RMS error of 2mml/s can be achieved in 10 ~ 20 minutes latency. The radial
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component position accuracy was 40cm, which is adequate for some
applications. The accuracy is approaching that of ground-based long-arc OD,
though with much less computional burden.

8.1.3 Quality Control and Improvement of Onboard GPS Data Processing

The quality of onboard GPS measurements and navigation solutions is often worse
than those obtained on the ground due to the harsh observation conditions in space.
As a consequence, great care has to be taken to ensure improvement of the
measurement quality by having reliable outlier detection algorithm for code
measurements. In addition, if we take the GPS measurements at every sample epoch
of 1~10 seconds directly, the nominal orbit and partial derivations need to be
generated at these epochs, which in turn results in a heavy computional burden (as
well as large onboard memory storage). To improve this situation, an optimal GPS
data processing scheme was implemented that included a simple recursive outlier
detection modules, a closed-form single point positioning algorithm (without need of
initial coordinates to increase onboard autonomy), and a sliding-window phase
smoothing algorithm to generate clean and compacted GPS measurements (further
savings of storage and efficient onboard orbit estimation).

The major results from the analysis and numerical studies can be summarized as
follows:

e We found that the best SPP result was achieved with 10 ~ 20 minutes of data
smoothing. For sliding-window smoothing, the results are basically the same
as with different window sizes, such as 1/2/5 minutes. Thus the 5 minutes
window size with 10 ~ 20 minutes smoothing is a good choice for onboard
processing.

e The closed-form SPP algorithm generates positioning solutions with tens of
metres of error. This accuracy can be achieved for 83% of measurements.
Furthermore, the error is smaller than 10 km for 99% of measurement, which

is still a good initial estimate for the subsequent orbit filtering process.
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8.1.4 Ground-based FedSat Orbit Determination Software System

Development and implementation of an orbit determination software system is a
very challenging engineering task. Based on the same preliminary software at the
CRCSS, a comprehensive GPS-based orbit determination software system has been
developed as part of this PhD research effort. This software not only provides a
technical platform for testing and implementation of the proposed new models and
algorithms, but also leads to an operational orbit determination system for ground-
based near-real time orbit determination for the FEDSAT satellite launched in 2002.
The system generates FEDSAT orbit solution with half-day latency on an
operational basis. This autonomous FedSat orbit determination system has also
supported the scientific missions of FEDSAT within the CRCSS community, such as
Ka-band tracking and GPS atmosphere studies.

The major results from the analysis and numerical studies are:

e The FedSat GPS data quality is approximately three times worse than data
from other satellite missions with an up-looking antenna. The FedSat
onboard navigation solutions have shown large uncertainties and
irregularities, and although an RMS accuracy of 56m was achieved, it was
often with errors of a few hundreds and even thousands of metres.

e The autonomous OD system at QUT has demonstrated the ability to provide

tens of metres FedSat orbit accuracy with half-day delay.

8.2 Scope and Limitation of the Research, Future Directions

This research focuses on software aspects of onboard GPS orbit determination
problem. As the computation will need to take time to complete after each data
output, strictly speaking this is a near-real time solution. However, by the use of
prediction the system can provide real time precise orbit knowledge to cover the
delay due to the computation, which can be several to tens of minutes in length. In
addition, although the techniques have been thoroughly tested using real LEO GPS
data, additional efforts are needed to implement the algorithms into a real hardware
platform. Issues of computing speed, memory usage and power consumption must be

re-visited from the point of view of software and hardware engineering. To reach an
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optimal performance revisions to the proposed methods are also required addressing

the actual computing system. Apart from this, suggestions for future research are:

The computational burden of the Earth gravity acceleration method can be
further improved. The storage penalty of 2.5 Mbytes is still not optimal.
There are savings available in simply using more latitude bands (e.g. smaller
incremental changes inAA). An investigation of other functional forms is
planned, including continued fractions, in an effort to reduce the number of
coefficients to be stored.

The research in extrapolation of Earth polar motion parametres was limited.
Further efforts should be made in this area, as this will improve the orbit
propagation accuracy and reduce the data upload frequency to the satellite.
This research is based on dual-frequency GPS measurements. Further
research effort can be made to implement a solution with single-frequency
GPS receivers.

A ground-based autonomous orbit determination is proposed in this
dissertation. With the innovative combination of short-arc GPS orbit
determination, long-arc GPS orbit determination, GPS precise single point
positioning and SGP4 filter; the system can automatically generate multi-
layer orbit determination solutions. However, more research effort is needed

to implement it as an operational system.
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Appendix A

An analytical solution of state transition matrix considering only the two-body forces,

this is the computation formulae for the H in Equation (3.42):

h=1-CMg
r0
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g :1_%82
r
where
o =y% +Y +2g
RS
. . . A-2
Ry = XXy + Yo Yo + 202, ( )
r=4x>+y> +2°
=1,-S,+R,-S, +GM S
Define:
., 2GM
= r() —
I‘.0
__GM _ [oM
a’ a’ (A-3)
V-a
Ey=(t-t)——
c a
_ 0
p N—-a
Then for i =0,1,2 and 3, S, can be computed as:
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Update E,with E, the true anomaly angle:
My, . R,
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Iteration is needed for the computation of E.

To express the partial derivatives for time t , the transcendental functions
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of S are used to determine the function:

U =Sz(t—t0)+GM(ﬂS4—3SS) (A-7)
Also, the accelerations are:
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The following solution for the 36 partial derivatives is completely general for the

elliptic case:
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Appendix B

The following directory chronologically lists the space missions that have included a
GPS receiver or receivers for any number of reasons. The directory is not an all-
inclusive listing of spaceborne GPS missions flown, but is rather a comprehensive
directory of missions that have been cited in scientific literature. Mission
descriptions, the capacity that the GPS receiver or receivers are used in, the model of
GPS receiver, references citing the mission relevant hyperlinks to mission home

pages or other related sites can be found in Spaceborne GPS website [Spaceborne

GPS mission directory, 2004].

Launch Date Mission Receiver(s)
July 1982 Landsat4 GPSPAC
March 1984 Landsat5 GPSPAC
July 1991 ORBCOMM-X --

June 1992 EUVE GPSDR
August 1992 TOPEX/Poseidon GPSDR
numerous flights Space Shuttle TANS

June 1993 RADCAL TANS Quadrex
July 1993 ORFEUS-SPAS-1 Alcatel/SEL
September 1993 PoSat-1 TANS
February 1994 OREX GPSDR
March 1994 DARPASAT AST-V

May 1994 TAOS/STEP-0 AST-V

May 1994 STEP-2 AST-V
August 1994 APEX TANS Vector
November 1994 CRISTA-SPAS TANS Vector
(1992 and 1994) COMET Ashtech SB24
January 1995 Faisat-1 --

March 1995 SFU GPSR

April 1995 ORBCOMM-FM1 TANS 11
April 1995 ORBCOMM-FM2 TANS 11
April 1995 OrbView-1 (formerly MicroLab-1) TurboStar
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August 1995 FASat-Alfa TANS
September 1995 Wake Shield Facility-02 TurboStar
September 1995 Skipper TANS II

January 1996

GADACS / SPARTAN OAST Flyer

Two TANS Vectors

May 1996 GANE / STS-77 TANS

May 1996 MSTI-3 Viceroy

May 1996 MOMS-2P Viceroy

November 1996 HETE SEXTANT
November 1996 Wake Shield Facility-03 TurboStar

February 1997 HALCA (formerly MUSES-B) GPS

March 1997 Zeya GPS and GLONASS

August 1997

OrbView-2 (formerly SeaStar)

redundant Viceroys

August 1997 SSTI Lewis Two Tensors
September 1997 Faisat-2v --

September 1997 IRS-1D --

October 1997 Falcon Gold TIDGET
October 1997 YES (sub-satellite of TEAMsat satellite) | TANS II
November 1997 ETS-VII --

December 1997 Equator-S Viceroy
December 1997 EarlyBird Vector and Viceroy
February 1998 GFO Four TurboStars
February 1998 Globalstar Tensor
February 1998 SNOE MicroGPS

July 1998 FASat-Bravo TANS II

July 1998 TMSat-1 SGR-10
October 1998 SEDSat-1 G12

October 1998 ARD --

November 1998

International Space Station

December 1998 SAC-A -

January 1999 ORSTED TANS, TurboStar
February 1999 ARGOS --

February 1999 SUNSAT TurboStar

April 1999 UoSAT-12 SGR-20

April 1999 Ikonos-1 Rockwell C/A code
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April 1999 ABRIXAS TANS 11

May 1999 IRS-P4 (OceanSat) --

June 1999 QuikSCAT 2 Viceroys

September 1999 SRTM AstroNav

September 1999 JAWSAT TANS Vector

late 1999 AMSAT Phase 3D Two TANS Vectors

1999 STRV-C AstroNav

1998 ARISTOTELES -

1998 TechSAT-II -

1997 and 1998 EOS-A and EOS-B --

1998 TSX-5 two TANS Vectors

1999 SAC.C Lagrange, Tensor,
AstroNav

1999 QuickBird 2 Viceroys

late '90s European Polar Platform --

late '90s RAMOS --

1999 Gravity Probe B 2 Vectors

December 1999 CHAMP AstroNav

summer 1999 OSEM Tensor or TANS Vector

May 2000 Jason-1 AstroNav

August 2000 VCL AstroNav

2000 BIRD Rockwell Collins

2001 MetOp-1 ESA GNSS receiver

June 2001 GRACE AstroNav

December 2002 FedSat-1 JPL BlackJack

July 2001 ICESat AstroNav

late 2001 BOLAS --

February 2003 Columbus Laboratory --

March 2003 ESA/ATV Tensor

2004 STEP AST-V

-- NASA/STV Mayflower receiver

- Spartan Lite GEC Plessey Chipset

Orbit Maneuvering Vehicle and Orbit

Transfer Vehicle
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